RTP/Drg1/Ndr1 genes are repressed by the proto-oncogenes N-myc and c-myc. Members of this family are found in wide variety of multicellular eukaryotes, including plants (ndr nothing to do with nodal-related genes) Ndr1 included in alpha/beta hydolase PF00561 now have a Pfam family PF03096. Shaw et al Proteins 2002 May 1;47(2):163-8 identified this family as alpha/beta hydrolase. Kalaydjieva et al. showed that human-NDRG1 is mutated in hereditary motor and sensory neuropathy-Lom. Bhaduri et al. showed that ratno-ndr4 (Bdm1) is associated with hot water epilepsy. Mitchelmore et al. showed that NDRG2 is upregulated in Alzheimer's disease. NDRG1 facilitates lytic replication of Kaposi's sarcoma-associated herpesvirus by maintaining the stability of the KSHV helicase as published by Dong et al. (obsolete subfamilies IPR030693 Protein NDRG1; IPR030690 Protein NDRG2; IPR030692 Protein NDRG3; IPR030695 Protein NDRG4)
The presumed DNA helicase encoded by ORF44 of Kaposi's sarcoma-associated herpesvirus (KSHV) plays a crucial role in unwinding viral double-stranded DNA and initiating DNA replication during lytic reactivation. However, the regulatory mechanism of KSHV ORF44 has not been fully elucidated. In a previous study, we identified that N-Myc downstream regulated gene 1 (NDRG1), a host scaffold protein, facilitates viral genome replication by interacting with proliferating cell nuclear antigen (PCNA) and the latent viral protein latency-associated nuclear antigen (LANA) during viral latency. In the present study, we further demonstrated that NDRG1 can interact with KSHV ORF44 during viral lytic replication. We also found that the mRNA and protein levels of NDRG1 were significantly increased by KSHV ORF50-encoded replication and transcription activator (RTA). Remarkably, knockdown of NDRG1 greatly decreased the protein level of ORF44 and impaired viral lytic replication. Interestingly, NDRG1 enhanced the stability of ORF44 and inhibited its ubiquitin-proteasome-mediated degradation by reducing the polyubiquitination of the lysine residues at positions 79 and 368 in ORF44. In summary, NDRG1 is a novel binding partner of ORF44 and facilitates viral lytic replication by maintaining the stability of ORF44. This study provides new insight into the mechanisms underlying KSHV lytic replication.
        
Title: Differential expression and hypoxia-mediated regulation of the N-myc downstream regulated gene family Le N, Hufford TM, Park JS, Brewster RM Ref: FASEB Journal, 35:e21961, 2021 : PubMed
Many organisms rely on oxygen to generate cellular energy (adenosine triphosphate or ATP). During severe hypoxia, the production of ATP decreases, leading to cell damage or death. Conversely, excessive oxygen causes oxidative stress that is equally damaging to cells. To mitigate pathological outcomes, organisms have evolved mechanisms to adapt to fluctuations in oxygen levels. Zebrafish embryos are remarkably hypoxia-tolerant, surviving anoxia (zero oxygen) for hours in a hypometabolic, energy-conserving state. To begin to unravel underlying mechanisms, we analyze here the distribution of the N-myc Downstream Regulated Gene (ndrg) family, ndrg1-4, and their transcriptional response to hypoxia. These genes have been primarily studied in cancer cells and hence little is understood about their normal function and regulation. We show here using in situ hybridization that ndrgs are expressed in metabolically demanding organs of the zebrafish embryo, such as the brain, kidney, and heart. To investigate whether ndrgs are hypoxia-responsive, we exposed embryos to different durations and severity of hypoxia and analyzed transcript levels. We observed that ndrgs are differentially regulated by hypoxia and that ndrg1a has the most robust response, with a ninefold increase following prolonged anoxia. We further show that this treatment resulted in de novo expression of ndrg1a in tissues where the transcript is not observed under normoxic conditions and changes in Ndrg1a protein expression post-reoxygenation. These findings provide an entry point into understanding the role of this conserved gene family in the adaptation of normal cells to hypoxia and reoxygenation.
        
Title: The Role of N-myc Downstream-Regulated Gene Family in Glioma Based on Bioinformatics Analysis Tang T, Wang H, Han Y, Huang H, Niu W, Fei M, Zhu Y Ref: DNA & Cell Biology, 40:949, 2021 : PubMed
Glioma is the most common type of primary tumor in the central nervous system, and the molecular mechanisms remain elusive. N-myc downstream-regulated gene (NDRG) family is reported to take part in the pathogenesis of various diseases, including some preliminary exploration in glioma. However, there has been no bioinformatics analysis of NDRG family in glioma yet. Herein, we focused on the expression changes of NDRGs with their value in predicting patients' prognoses, upstream regulatory mechanisms (DNA mutation, DNA methylation, transcription factors, and microRNA regulation) and gene enrichment analysis based on co-expressed genes with data from public databases. Furthermore, the expression pattern of NDRGs was verified by the paired glioma and peritumoral samples in our institute. It was suggested that NDRGs were differentially expressed genes in glioma. In particular, the lower expression of NDRG2 or NDRG4 could serve as a predictor of higher grade tumor and poorer prognosis. Also, NDRGs might play a crucial role in signal transduction, energy metabolism, and cross-talk among cells in glioma, under the control of a complex regulatory network. This study enables us to better understand the role of NDRGs in glioma and with further research, it may contribute to the development of glioma treatment.
        
10 lessTitle: Prognostic and biological role of the N-Myc downstream-regulated gene family in hepatocellular carcinoma Yin X, Yu H, He XK, Yan SX Ref: World J Clin Cases, 10:2072, 2022 : PubMed
BACKGROUND: The N-Myc downstream-regulated gene (NDRG) family is comprised of four members (NDRG1-4) involved in various important biological processes. However, there is no systematic evaluation of the prognostic of the NDRG family in hepatocellular carcinoma (HCC). AIM: To analyze comprehensively the biological role of the NDRG family in HCC. METHODS: The NDRG family expression was explored using The Cancer Genome Atlas. DNA methylation interactive visualization database was used for methylation analysis of the NDRG family. The NDRG family genomic alteration was assessed using the cBioPortal. Single-sample Gene Set Enrichment Analysis was used to determine the degree of immune cell infiltration in tumors. RESULTS: NDRG1 and NDRG3 were up-regulated in HCC, while NDRG2 was down-regulated. Consistent with expression patterns, high expression of NDRG1 and NDRG3 was associated with poor survival outcomes (P < 0.05). High expression of NDRG2 was associated with favorable survival (P < 0.005). An NDRG-based signature that statistically stratified the prognosis of the patients was constructed. The percentage of genetic alterations in the NDRG family varied from 0.3% to 11.0%, and the NDRG1 mutation rate was the highest. NDRG 1-3 expression was associated with various types of inltrated immune cells. Gene ontology analysis revealed that organic acid catabolism was the most important biological process related to the NDRG family. Gene Set Enrichment Analysis showed that metabolic, proliferation, and immune-related gene sets were enriched during NDRG1 and NDRG3 high expression and NDRG2 low expression. CONCLUSION: Overexpression of NDRG1 and NDRG3 and down-expression of NDRG2 are correlated with poor overall HCC prognosis. Our results may provide new insights into the indispensable role of NDRG1, 2, and 3 in the development of HCC and guide a promising new strategy for treating HCC.
        
Title: NDRG1 facilitates lytic replication of Kaposi's sarcoma-associated herpesvirus by maintaining the stability of the KSHV helicase Dong L, Dong J, Xiang M, Lei P, Li Z, Zhang F, Sun X, Niu D, Bai L, Lan K Ref: PLoS Pathog, 17:e1009645, 2021 : PubMed
The presumed DNA helicase encoded by ORF44 of Kaposi's sarcoma-associated herpesvirus (KSHV) plays a crucial role in unwinding viral double-stranded DNA and initiating DNA replication during lytic reactivation. However, the regulatory mechanism of KSHV ORF44 has not been fully elucidated. In a previous study, we identified that N-Myc downstream regulated gene 1 (NDRG1), a host scaffold protein, facilitates viral genome replication by interacting with proliferating cell nuclear antigen (PCNA) and the latent viral protein latency-associated nuclear antigen (LANA) during viral latency. In the present study, we further demonstrated that NDRG1 can interact with KSHV ORF44 during viral lytic replication. We also found that the mRNA and protein levels of NDRG1 were significantly increased by KSHV ORF50-encoded replication and transcription activator (RTA). Remarkably, knockdown of NDRG1 greatly decreased the protein level of ORF44 and impaired viral lytic replication. Interestingly, NDRG1 enhanced the stability of ORF44 and inhibited its ubiquitin-proteasome-mediated degradation by reducing the polyubiquitination of the lysine residues at positions 79 and 368 in ORF44. In summary, NDRG1 is a novel binding partner of ORF44 and facilitates viral lytic replication by maintaining the stability of ORF44. This study provides new insight into the mechanisms underlying KSHV lytic replication.
        
Title: Differential expression and hypoxia-mediated regulation of the N-myc downstream regulated gene family Le N, Hufford TM, Park JS, Brewster RM Ref: FASEB Journal, 35:e21961, 2021 : PubMed
Many organisms rely on oxygen to generate cellular energy (adenosine triphosphate or ATP). During severe hypoxia, the production of ATP decreases, leading to cell damage or death. Conversely, excessive oxygen causes oxidative stress that is equally damaging to cells. To mitigate pathological outcomes, organisms have evolved mechanisms to adapt to fluctuations in oxygen levels. Zebrafish embryos are remarkably hypoxia-tolerant, surviving anoxia (zero oxygen) for hours in a hypometabolic, energy-conserving state. To begin to unravel underlying mechanisms, we analyze here the distribution of the N-myc Downstream Regulated Gene (ndrg) family, ndrg1-4, and their transcriptional response to hypoxia. These genes have been primarily studied in cancer cells and hence little is understood about their normal function and regulation. We show here using in situ hybridization that ndrgs are expressed in metabolically demanding organs of the zebrafish embryo, such as the brain, kidney, and heart. To investigate whether ndrgs are hypoxia-responsive, we exposed embryos to different durations and severity of hypoxia and analyzed transcript levels. We observed that ndrgs are differentially regulated by hypoxia and that ndrg1a has the most robust response, with a ninefold increase following prolonged anoxia. We further show that this treatment resulted in de novo expression of ndrg1a in tissues where the transcript is not observed under normoxic conditions and changes in Ndrg1a protein expression post-reoxygenation. These findings provide an entry point into understanding the role of this conserved gene family in the adaptation of normal cells to hypoxia and reoxygenation.
Mutations in the N-myc downstream-regulated gene 1 (NDRG1) cause degenerative polyneuropathy in ways that are poorly understood. We have investigated Alaskan Malamute dogs with neuropathy caused by a missense mutation in NDRG1. In affected animals, nerve levels of NDRG1 protein were reduced by more than 70% (p< 0.03). Nerve fibers were thinly myelinated, loss of large myelinated fibers was pronounced and teased fiber preparations showed both demyelination and remyelination. Inclusions of filamentous material containing actin were present in adaxonal Schwann cell cytoplasm and Schmidt-Lanterman clefts. This condition strongly resembles the human Charcot-Marie-Tooth type 4D. However, the focally folded myelin with adaxonal infoldings segregating the axon found in this study are ultrastructural changes not described in the human disease. Furthermore, lipidomic analysis revealed a profound loss of peripheral nerve lipids. Our data suggest that the low levels of mutant NDRG1 is insufficient to support Schwann cells in maintaining myelin homeostasis.
        
Title: The Role of N-myc Downstream-Regulated Gene Family in Glioma Based on Bioinformatics Analysis Tang T, Wang H, Han Y, Huang H, Niu W, Fei M, Zhu Y Ref: DNA & Cell Biology, 40:949, 2021 : PubMed
Glioma is the most common type of primary tumor in the central nervous system, and the molecular mechanisms remain elusive. N-myc downstream-regulated gene (NDRG) family is reported to take part in the pathogenesis of various diseases, including some preliminary exploration in glioma. However, there has been no bioinformatics analysis of NDRG family in glioma yet. Herein, we focused on the expression changes of NDRGs with their value in predicting patients' prognoses, upstream regulatory mechanisms (DNA mutation, DNA methylation, transcription factors, and microRNA regulation) and gene enrichment analysis based on co-expressed genes with data from public databases. Furthermore, the expression pattern of NDRGs was verified by the paired glioma and peritumoral samples in our institute. It was suggested that NDRGs were differentially expressed genes in glioma. In particular, the lower expression of NDRG2 or NDRG4 could serve as a predictor of higher grade tumor and poorer prognosis. Also, NDRGs might play a crucial role in signal transduction, energy metabolism, and cross-talk among cells in glioma, under the control of a complex regulatory network. This study enables us to better understand the role of NDRGs in glioma and with further research, it may contribute to the development of glioma treatment.
        
Title: The Iron-Regulated Metastasis Suppressor NDRG1 Targets NEDD4L, PTEN, and SMAD4 and Inhibits the PI3K and Ras Signaling Pathways. Kovacevic Z, Chikhani S, Lui GY, Sivagurunathan S, Richardson DR Ref: Antioxid Redox Signal, 18:874, 2013 : PubMed
Abstract Aims: The metastasis suppressor gene, N-myc downstream regulated gene-1 (NDRG1), is negatively correlated with tumor progression in multiple neoplasms, including pancreatic cancer. Moreover, NDRG1 is an iron-regulated gene that is markedly upregulated by cellular iron-depletion using novel antitumor agents such as the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), in pancreatic cancer cells. However, the exact function(s) of NDRG1 remain to be established and are important to elucidate. Results: In the current study, using gene-array analysis along with NDRG1 overexpression and silencing, we identified the molecular targets of NDRG1 in three pancreatic cancer cell lines. We demonstrate that NDRG1 upregulates neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) and GLI-similar-3 (GLIS3). Further studies examining the downstream effects of NEDD4L led to the discovery that NDRG1 affects the transforming growth factor-beta (TGF-beta) pathway, leading to the upregulation of two key tumor suppressor proteins, namely phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and mothers against decapentaplegic homolog-4 (SMAD4). Moreover, NDRG1 inhibited the phosphatidylinositol 3-kinase (PI3K) and Ras oncogenic pathways. Innovation: This study provides significant insights into the mechanisms underlying the antitumor activity of NDRG1. For the first time, a role for NDRG1 is established in regulating the key signaling pathways involved in oncogenesis (TGF-beta, PI3K, and Ras pathways). Conclusion: The identified target genes of NDRG1 and their effect on the TGF-beta signaling pathway reveal its molecular function in pancreatic cancer and a novel therapeutic avenue.
NDRG2 is a member of the N-myc downstream regulated gene (NDRG) family, implicated in cell growth and differentiation. Investigation of NDRG2 molecular interactions by yeast two-hybrid screening identified prenylated Rab acceptor-1 (PRA1), involved in vesicle trafficking and protein transport, as binding partner. Binding of NDRG2 (and NDRG1-4) with PRA1 in vitro was confirmed by GST pull-down assay and immunoprecipitation, and colocalization was verified by confocal microscopy in HCT116 cells. Intracellular coexpression showed that NDRG2 and PRA1 synergistically downregulate T-cell factor (TCF) promoter activity and GSK3beta phosphorylation. Results suggest that NDRG2 and PRA1 might act synergistically to prevent signaling of TCF/beta-catenin.
Considerable attention has recently been paid to the N-Myc downstream-regulated gene (NDRG) family because of its potential as a tumor suppressor in many human cancers. Primary amino acid sequence information suggests that the NDRG family proteins may belong to the alpha/beta-hydrolase (ABH) superfamily; however, their functional role has not yet been determined. Here, we present the crystal structures of the human and mouse NDRG2 proteins determined at 2.0 and 1.7 A resolution, respectively. Both NDRG2 proteins show remarkable structural similarity to the ABH superfamily, despite limited sequence similarity. Structural analysis suggests that NDRG2 is a nonenzymatic member of the ABH superfamily, because it lacks the catalytic signature residues and has an occluded substrate-binding site. Several conserved structural features suggest NDRG may be involved in molecular interactions. Mutagenesis data based on the structural analysis support a crucial role for helix alpha6 in the suppression of TCF/beta-catenin signaling in the tumorigenesis of human colorectal cancer, via a molecular interaction.
The N-myc downstream regulated gene (NDRG) family of proteins consists of 4 members, NDRG1-4, which are well conserved through evolution. The first member to be discovered and responsible for the family name was NDRG1, because its expression is repressed by the proto-oncogenes MYCN and MYC. All family members are characterized by an alpha/beta hydrolase-fold motif; however, the precise molecular and cellular function of these family members has not been fully elucidated. Although the exact function of NDRG family members has not been clearly elucidated, emerging evidence suggests that mutations in these genes are associated with diverse neurological and electrophysiological syndromes. In addition, aberrant expression as well as tumor suppressor and oncogenic functions affecting key hallmarks of carcinogenesis such as cell proliferation, differentiation, migration, invasion, and stress response have been reported for several of the NDRG proteins. In this review, we summarize the current literature on the NDRG family members concerning their structure, origin, and tissue distribution. In addition, we review the current knowledge regarding the regulation and signaling of the NDRG family members in development and normal physiology. Finally, their role in disease and potential clinical applications (their role as detection or prognostic markers) are discussed.
Our understanding of the genes involved in Alzheimer's disease (AD) is incomplete. Using subtractive cloning technology, we discovered that the alpha/beta-hydrolase fold protein gene NDRG2 (NDRG family member 2) is upregulated at both the RNA and protein levels in AD brains. Expression of NDRG2 in affected brains was revealed in (1) cortical pyramidal neurons, (2) senile plaques and (3) cellular processes of dystrophic neurons. Overexpression of two splice variants encoding a long and short NDRG2 isoform in hippocampal pyramidal neurons of transgenic mice resulted in localization of both isoforms to dendritic processes. Taken together, our findings suggest that NDRG2 upregulation is associated with disease pathogenesis in the human brain and provide new insight into the molecular changes that occur in AD.
Hot water epilepsy (HWE) is a benign and rare form of reflex epilepsy that occurs most commonly in humans. Bdm1 is one of the proteins whose mRNA transcript is overexpressed during HWE in a rat model. We show, by sequence analysis and fold recognition methods, that Bdm1 has strong structural similarities to alpha/beta hydrolases like the thioesterases. A three-dimensional model derived by comparative modeling methods allowed the search for catalytic residues using a flexible functional template characteristic of these enzymes. We predict that Bdm1 might be regulated by homocysteine levels by means of direct participation in degradation pathways.
        
Title: Identification of a novel class in the alpha/beta hydrolase fold superfamily: the N-myc differentiation-related proteins Shaw E, McCue LA, Lawrence CE, Dordick JS Ref: Proteins, 47:163, 2002 : PubMed
The alpha/beta hydrolases constitute a large protein superfamily that mainly consists of enzymes that catalyze a diverse range of reactions. These proteins exhibit the alpha/beta hydrolase fold, the essential features of which have recently been delineated: the presence of at least five parallel beta-strands, a catalytic triad in a specific order (nucleophile-acid-histidine), and a nucleophilic elbow. Because of the difficulties experimentally in identifying protein structures, we have used a Bayesian computational algorithm (PROBE) to identify the members of this superfamily based on distant sequence relationships. We found that the presence of five sequence motifs, which contain residues important for substrate binding and stabilization of the fold, are required for membership in this superfamily. The superfamily consists of at least 909 members, including the N-myc downstream regulated proteins, which are believed to be involved in cell differentiation. Unlike most of the other superfamily members, the N-myc downstream regulated proteins have never been proposed to possess the alpha/beta hydrolase fold and do not appear to be hydrolases.
Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused research on the mechanisms of early development, cell differentiation, and cell-cell interactions in the peripheral nervous system. Autosomal recessive peripheral neuropathies are relatively rare but are clinically more severe than autosomal dominant forms of CMT, and understanding their molecular basis may provide a new perspective on these mechanisms. Here we report the identification of the gene responsible for hereditary motor and sensory neuropathy-Lom (HMSNL). HMSNL shows features of Schwann-cell dysfunction and a concomitant early axonal involvement, suggesting that impaired axon-glia interactions play a major role in its pathogenesis. The gene was previously mapped to 8q24.3, where conserved disease haplotypes suggested genetic homogeneity and a single founder mutation. We have reduced the HMSNL interval to 200 kb and have characterized it by means of large-scale genomic sequencing. Sequence analysis of two genes located in the critical region identified the founder HMSNL mutation: a premature-termination codon at position 148 of the N-myc downstream-regulated gene 1 (NDRG1). NDRG1 is ubiquitously expressed and has been proposed to play a role in growth arrest and cell differentiation, possibly as a signaling protein shuttling between the cytoplasm and the nucleus. We have studied expression in peripheral nerve and have detected particularly high levels in the Schwann cell. Taken together, these findings point to NDRG1 having a role in the peripheral nervous system, possibly in the Schwann-cell signaling necessary for axonal survival.