Parvari et al. (2001, 2005) identified PREPL as one of the genes deleted in the homozygous 2p21 deletion syndrome. Jaeken et al. (2006) studied 11 patients with the hypotonia-cystinuria syndrome, also known as the 2p21 deletion syndrome. They found microdeletion of part of the SLC3A1 and PREPL genes on 2p21. Since loss-of-function mutations in SLC3A1 were known to cause isolated cystinuria type I , and since the expression of the flanking genes, C2orf34 and PPM1B, was normal, the extended phenotype could be attributed to deletion of PREPL.
PurposePREPL deficiency causes neonatal hypotonia, ptosis, neonatal feeding difficulties, childhood obesity, xerostomia, and growth hormone deficiency. Different recessive contiguous gene deletion syndromes involving PREPL and a variable combination of SLC3A1 (hypotonia-cystinuria syndrome), CAMKMT (atypical hypotonia-cystinuria syndrome), and PPM1B (2p21 deletion syndrome) have been described. In isolated PREPL deficiency, previously described only once, the absence of cystinuria complicates the diagnosis. Therefore, we developed a PREPL blood assay and further delineated the phenotype.MethodsClinical features of new subjects with PREPL deficiency were recorded. The presence of PREPL in lymphocytes and its reactivity with an activity-based probe were evaluated by western blot.ResultsFive subjects with isolated PREPL deficiency, three with hypotonia-cystinuria syndrome, and two with atypical hypotonia-cystinuria syndrome had nine novel alleles. Their IQs ranged from 64 to 112. Adult neuromuscular signs included ptosis, nasal dysarthria, facial weakness, and variable proximal and neck flexor weakness. Autonomic features are prevalent. PREPL protein and reactivity were absent in lymphocytes from subjects with PREPL deficiency, but normal in the clinically similar Prader-Willi syndrome.ConclusionPREPL deficiency causes neuromuscular, autonomic, cognitive, endocrine, and dysmorphic clinical features. PREPL is not deficient in Prader-Willi syndrome. The novel blood test should facilitate the confirmation of PREPL deficiency.
OBJECTIVE: To investigate the genetic and physiologic basis of the neuromuscular symptoms of hypotonia-cystinuria syndrome (HCS) and isolated PREPL deficiency, and their response to therapy. METHODS: We performed molecular genetic, histochemical, immunoblot, and ultrastructural studies, investigated neuromuscular transmission in vitro in a patient with isolated PREPL deficiency, and evaluated the effect of pyridostigmine in this patient and in 3 patients with the HCS. RESULTS: HCS is caused by recessive deletions involving the SLC3A1 and PREPL genes. The major clinical features of HCS are type A cystinuria, growth hormone deficiency, muscle weakness, ptosis, and feeding problems. The proband with isolated PREPL deficiency had myasthenic symptoms since birth and a positive edrophonium test but no cystinuria. She and 1 of 3 patients with HCS responded transiently to pyridostigmine during infancy. The proband harbors a paternally inherited nonsense mutation in PREPL and a maternally inherited deletion involving both PREPL and SLC3A1; therefore, the PREPL deficiency determines the phenotype. We detected no PREPL expression in the patient's muscle and endplates. Electrophysiology studies revealed decreased quantal content of the endplate potential and reduced amplitude of the miniature endplate potential without endplate acetylcholine receptor deficiency or altered endplate geometry. CONCLUSION: Isolated PREPL deficiency is a novel monogenic disorder that causes a congenital myasthenic syndrome with pre- and postsynaptic features and growth hormone deficiency. The myasthenic symptoms in PREPL deficiency with or without cystinuria may respond to pyridostigmine in early life. We attribute the myasthenia to abrogated interaction of PREPL with adaptor protein 1.
Hypotonia-cystinuria syndrome (HCS) is an autosomal recessive disorder caused by combined deletions of SLC3A1 and PREPL. Clinical features include cystinuria, neonatal hypotonia with spontaneous improvement, poor feeding in neonates, hyperphagia in childhood, growth hormone deficiency, and variable cognitive problems. Only 14 families with 6 different deletions have been reported. Patients are often initially misdiagnosed, while correct diagnosis enables therapeutic interventions. We report two novel deletions, further characterizing the clinical and molecular genetics spectrum of HCS.
        
Title: PREPL, a prolyl endopeptidase-like enzyme by name only?--Lessons from patients Boonen K, Regal L, Jaeken J, Creemers JW Ref: CNS Neurol Disord Drug Targets, 10:355, 2011 : PubMed
Deletion of the Prolyl Endopeptidase-like (PREPL) gene has been described in three contiguous gene deletion syndromes at the 2p21 locus and current developments in high resolution microarrays and whole genome sequencing will no doubt soon result in the identification of isolated PREPL deficiency. But by comparing the differences in phenotypes with the number of genes deleted, the contribution of PREPL deficiency can already be deduced. Homozygous or compound heterozygous loss of PREPL is predicted to cause neonatal hypotonia and severe feeding problems. Failure to thrive usually persists for several years, followed by a period of hyperphagia and excessive weight gain. Growth retardation is usually observed, which responds well to growth hormone therapy. In addition, minor facial dysmorphism, nasal speech, viscous saliva, hypergonadotropic hypogonadism and learning problems are frequently observed. How PREPL deficiency causes these clinical manifestations remains unknown. PREPL is highly expressed in brain and based on gene coexpression network architecture it has been placed in a group enriched with markers of neurons and synaptic proteins. PREPL is predicted to be a serine oligopeptidase based on its homology with prolyl endopeptidase (PREP) and the presence of an active catalytic triad. However, until now no substrates have been found. Recent observations that PREP has non-catalytic functions in the cytoplasm through interactions with its amino- terminal propeller domain, suggests that of PREPL may also have biological functions independent of its predicted peptidase activity. This raises the possibility that PREP and PREPL are homologous, not just by name but also by nature.
BACKGROUND: Hypotonia-cystinuria syndrome (HCS) and 2p21 deletion syndrome are two recessive contiguous gene deletion syndromes associated with cystinuria type I. The deletions differ in size and the number of genes involved. In HCS patients, only SLC3A1 and PREPL are disrupted. In the 2p21 deletion syndrome, two additional genes (C2orf34 and PPM1B) are lost. OBJECTIVE: Clinical and molecular analysis of two siblings who presented with an atypical HCS phenotype. METHODS: Molecular analysis of the SLC3A1/PREPL locus was performed in the patients using quantitative polymerase chain reaction (PCR) methods. RESULTS: HCS in both siblings was confirmed with the deletion screen of the SLC3A1/PREPL locus. Fine mapping of the breakpoint revealed a deletion of 77.4 kb, including three genes: SLC3A1, PREPL and C2orf34. Features not present in classical HCS were a mild/moderate mental retardation and a respiratory chain complex IV deficiency documented in patient 2. CONCLUSIONS: We report the first patients with a deletion of SLC3A1, PREPL and C2orf34. They present with a phenotype intermediate between HCS and 2p21 deletion syndrome. These patients facilitate the elucidation of the contribution of each gene to the phenotype in the different 2p21 deletion syndromes.
Cystinuria type I is an autosomal recessive disorder with an exclusively renal phenotype caused by inactivating mutations in SLC3A1. Recently 3 similar but distinct syndromes associated with cystinuria type I have been described: 2p21 deletion syndrome, Hypotonia-Cystinuria Syndrome (HCS) and atypical HCS. Genetic analysis indicated that these are recessive contiguous gene deletion syndromes which differ in the number of genes affected. Patients with HCS are missing both alleles of SLC3A1 and PREPL. In atypical HCS an additional gene (C2orf34) is deleted, and finally, in the 2p21 deletion syndrome the open reading frame of PPM1B is also disrupted. With the exception of SLC3A1, the gene products have not been fully characterized. The severity of the different syndromes reflects the number of genes which are deleted. HCS, a relatively mild syndrome, is characterised by cystinuria type I, generalised hypotonia at birth, growth retardation and minor facial dysmorphic features. On the other end of the spectrum is the 2p21 deletion syndrome, a severe syndrome with a number of additional features including a moderate to severe psychomotor retardation and a decrease in activity of the respiratory chain complexes I, III, IV and V. Finally, atypical HCS displays an intermediate phenotype comparable with classical HCS but associated with mild to moderate mental retardation and a decrease in activity of only the respiratory chain complex IV. This review will focus on the phenotypic similarities and differences observed in these syndromes. Furthermore, we speculate on the function of the gene products, based on the available data.
Hypotonia-cystinuria syndrome (HCS) is a recessive disorder caused by microdeletions of SLC3A1 and PREPL on chromosome 2p21. Patients present with generalized hypotonia at birth, failure to thrive, growth retardation and cystinuria type I. While the initially described HCS families live in small regions in Belgium and France, we have now identified HCS alleles in patients and carriers from the Netherlands, Italy, Canada and United States of America. Surprisingly, among the nine deletions detected in those patients, only one novel deletion was found. Furthermore, one previously described deletion was found six times, another twice. Finally, we have investigated the frequency of both deletions using a random Belgian cohort. Given the global occurrence, HCS should be considered in the differential diagnosis of neonatal hypotonia.
In 11 patients with a recessive congenital disorder, which we refer to as "the hypotonia-cystinuria syndrome," microdeletion of part of the SLC3A1 and PREPL genes on chromosome 2p21 was found. Patients present with generalized hypotonia at birth, nephrolithiasis, growth hormone deficiency, minor facial dysmorphism, and failure to thrive, followed by hyperphagia and rapid weight gain in late childhood. Since loss-of-function mutations in SLC3A1 are known to cause isolated cystinuria type I, and since the expression of the flanking genes, C2orf34 and PPM1B, was normal, the extended phenotype can be attributed to the deletion of PREPL. PREPL is localized in the cytosol and shows homology with prolyl endopeptidase and oligopeptidase B. Substitution of the predicted catalytic residues (Ser470, Asp556, and His601) by alanines resulted in loss of reactivity with a serine hydrolase-specific probe. In sharp contrast to prolyl oligopeptidase and oligopeptidase B, which require both aminoterminal and carboxyterminal sequences for activity, PREPL activity appears to depend only on the carboxyterminal domain. Taken together, these results suggest that PREPL is a novel oligopeptidase, with unique structural and functional characteristics, involved in hypotonia-cystinuria syndrome.
The vast majority of small-deletion syndromes are caused by haploinsufficiency of one or several genes and are transmitted as dominant traits. We have previously identified a homozygous deletion of 179,311 bp on chromosome 2p21 as the cause of a unique syndrome, inherited in a recessive mode, consisting of cystinuria, neonatal seizures, hypotonia, severe somatic and developmental delay, facial dysmorphism, and reduced activity of all the respiratory chain enzymatic complexes that are encoded in the mitochondria. We now present the transcription content of this region: Multiple splicing variants of the genes protein phosphatase 1B (formerly 2C) magnesium-dependent, beta isoform (PPM1B), SLC3A1, and KIAA0436 (approved gene symbol PREPL) were identified and their patterns of expression analyzed. The spliced variants are predicted to have additional functions compared to the known variants and their patterns of expression fit the tissues affected by the syndrome. The first exon of an additional gene (C2orf34) is encoded in the deleted region and the gene is not expressed in the patients. In addition several transcripts with very short open reading frames are also encoded in the deletion. The identification of all transcripts encoded in the region deleted in the patients is the first step in the study of the genotype-phenotype correlation of the 2p21 patients.
Deletions ranging from 100 Kb to 1 Mb--too small to be detected under the microscope--may still involve dozens of genes, thus causing microdeletion syndromes. The vast majority of these syndromes are caused by haploinsufficiency of one or several genes and are transmitted as dominant traits. We identified seven patients originating from an extended family and presenting with a unique syndrome, inherited in a recessive mode, consisting of cystinuria, neonatal seizures, hypotonia, severe somatic and developmental delay, facial dysmorphism, and lactic acidemia. Reduced activity of all the respiratory chain enzymatic complexes that are encoded in the mitochondria was found in muscle biopsy specimens of the patients examined. The molecular basis of this disorder is a homozygous deletion of 179,311 bp on chromosome 2p16, which includes the type I cystinuria gene (SLC3A1), the protein phosphatase 2Cbeta gene (PP2Cbeta), an unidentified gene (KIAA0436), and several expressed sequence tags. The extent of the deletion suggests that this unique syndrome is related to the complete absence of these genes' products, one of which may be essential for the synthesis of mitochondrial encoded proteins.