(from OMIM) Autosomal recessive peripheral neuropathies are relatively rare but are clinically more severe than autosomal dominant forms of Charcot-Marie-Tooth disease (CMT). The Lom form of hereditary motor and sensory neuropathy (HMSNL), or CMT4D, is one such disorder. Kalaydjieva et al. (1996) described an autosomal recessive peripheral neuropathy with deafness and unusual neuropathologic features, initially identified in 14 affected individuals from the Gypsy community of Lom, a small town on the Danube river in the northwest of Bulgaria. They proposed to refer to the disorder as 'hereditary motor and sensory neuropathy-Lom' (HMSNL). Kalaydjieva et al. (1996) stated that HMSNL is characterized by distal muscle wasting and atrophy, foot and hand deformities, tendon areflexia, and sensory loss. Onset is in the first decade and most patients become severely disabled in the fifth decade. Deafness is an invariant feature of the phenotype and usually develops in the third decade. HMSNL shows features of Schwann cell dysfunction and a concomitant early axonal involvement, suggesting that impaired axon-glia interactions play a major role in its pathogenesis. Kalaydjieva et al. (2000) identified the founder HMSNL mutation, a nonsense arg148-to-ter mutation in the NDRG1 gene. Another gene of the same family ratno-ndr4 (Bdm1) is associated with hot water epilepsy (Bhaduri et al. 2003)
Hereditary neuropathies comprise a wide variety of chronic diseases associated to more than 80 genes identified to date. We herein examined 612 index patients with either a Charcot-Marie-Tooth phenotype, hereditary sensory neuropathy, familial amyloid neuropathy, or small fiber neuropathy using a customized multigene panel based on the next generation sequencing technique. In 121 cases (19.8%), we identified at least one putative pathogenic mutation. Of these, 54.4% showed an autosomal dominant, 33.9% an autosomal recessive, and 11.6% an X-linked inheritance. The most frequently affected genes were PMP22 (16.4%), GJB1 (10.7%), MPZ, and SH3TC2 (both 9.9%), and MFN2 (8.3%). We further detected likely or known pathogenic variants in HINT1, HSPB1, NEFL, PRX, IGHMBP2, NDRG1, TTR, EGR2, FIG4, GDAP1, LMNA, LRSAM1, POLG, TRPV4, AARS, BIC2, DHTKD1, FGD4, HK1, INF2, KIF5A, PDK3, REEP1, SBF1, SBF2, SCN9A, and SPTLC2 with a declining frequency. Thirty-four novel variants were considered likely pathogenic not having previously been described in association with any disorder in the literature. In one patient, two homozygous mutations in HK1 were detected in the multigene panel, but not by whole exome sequencing. A novel missense mutation in KIF5A was considered pathogenic because of the highly compatible phenotype. In one patient, the plasma sphingolipid profile could functionally prove the pathogenicity of a mutation in SPTLC2. One pathogenic mutation in MPZ was identified after being previously missed by Sanger sequencing. We conclude that panel based next generation sequencing is a useful, time- and cost-effective approach to assist clinicians in identifying the correct diagnosis and enable causative treatment considerations.
        
Title: Identification and functional characterization of two missense mutations in NDRG1 associated with Charcot-Marie-Tooth disease type 4D Li LX, Liu GL, Liu ZJ, Lu C, Wu ZY Ref: Hum Mutat, 38:1569, 2017 : PubMed
Charcot-Marie-Tooth disease type 4D (CMT4D) is an autosomal-recessive demyelinating form of CMT characterized by a severe distal motor and sensory neuropathy. NDRG1 is the causative gene for CMT4D. To date, only four mutations in NDRG1 -c.442C>T (p.Arg148*), c.739delC (p.His247Thrfs*74), c.538-1G>A, and duplication of exons 6-8-have been described in CMT4D patients. Here, using targeted next-generation sequencing examination, we identified for the first time two homozygous missense variants in NDRG1, c.437T>C (p.Leu146Pro) and c.701G>A (p.Arg234Gln), in two Chinese CMT families with consanguineous histories. Further functional studies were performed to characterize the biological effects of these variants. Cell culture transfection studies showed that mutant NDRG1 carrying p.Leu146Pro, p.Arg148*, or p.Arg234Gln variant degraded faster than wild-type NDRG1, resulting in lower protein levels. Live cell confocal microscopy and coimmunoprecipitation analysis indicated that these variants did not disrupt the interaction between NDRG1 and Rab4a protein. However, NDRG1-knockdown cells expressing mutant NDRG1 displayed enlarged Rab4a-positive compartments. Moreover, mutant NDRG1 could not enhance the uptake of DiI-LDL or increase the fraction of low-density lipoprotein receptor on the cell surface. Taken together, our study described two missense mutations in NDRG1 and emphasized the important role of NDRG1 in intracellular protein trafficking.
Charcot-Marie-Tooth disease type 4D (CMT4D), also known as hereditary motor and sensory neuropathy Lom type (HMSNL), is an autosomal recessive, early onset, severe demyelinating neuropathy with hearing loss, caused by N-Myc downstream-regulated gene 1 (NDRG1) mutations. CMT4D is rare with only three known mutations, one of which (p.Arg148Ter) is found in patients of Romani ancestry and accounts for the vast majority of cases. We report a 38-year-old Italian female with motor development delay, progressive neuropathy, and sensorineural deafness. Magnetic resonance imaging showed slight atrophy of cerebellum, medulla oblongata, and upper cervical spinal cord. She had a novel homozygous NDRG1 frameshift mutation (c.739delC; p.His247ThrfsTer74). The identification of this NDRG1 mutation confirms that CMT4D is not a private Romani disease and should be considered in the differential diagnosis of recessive demyelinating CMT.
PURPOSE: Copy-number variations as a mutational mechanism contribute significantly to human disease. Approximately one-half of the patients with Charcot-Marie-Tooth (CMT) disease have a 1.4 Mb duplication copy-number variation as the cause of their neuropathy. However, non-CMT1A neuropathy patients rarely have causative copy-number variations, and to date, autosomal-recessive disease has not been associated with copy-number variation as a mutational mechanism. METHODS: We performed Agilent 8 x 60 K array comparative genomic hybridization on DNA from 12 recessive Turkish families with CMT disease. Additional molecular studies were conducted to detect breakpoint junctions and to evaluate gene expression levels in a family in which we detected an intragenic duplication copy-number variation. RESULTS: We detected an ~6.25 kb homozygous intragenic duplication in NDRG1, a gene known to be causative for recessive HMSNL/CMT4D, in three individuals from a Turkish family with CMT neuropathy. Further studies showed that this intragenic copy-number variation resulted in a homozygous duplication of exons 6-8 that caused decreased mRNA expression of NDRG1. CONCLUSION: Exon-focused high-resolution array comparative genomic hybridization enables the detection of copy-number variation carrier states in recessive genes, particularly small copy-number variations encompassing or disrupting single genes. In families for whom a molecular diagnosis has not been elucidated by conventional clinical assays, an assessment for copy-number variations in known CMT genes might be considered.
Charcot-Marie-Tooth (CMT) disease is a heterogeneous condition with a large number of clinical, electrophysiological and pathological phenotypes. More than 40 genes are involved. We report a child of gypsy origin with an autosomal recessive demyelinating phenotype. Clinical data, familial history, and electrophysiological studies were in favor of a CMT4 sub-type. The characteristic N-Myc downstream-regulated gene 1 (NDRG1) mutation responsible for this CMT4D phenotype was confirmed: p.R148X. The exact molecular function of the NDRG1 protein has yet to be elucidated.
Four private mutations responsible for three forms demyelinating of Charcot-Marie-Tooth (CMT) or hereditary motor and sensory neuropathy (HMSN) have been associated with the Gypsy population: the NDRG1 p.R148X in CMT type 4D (CMT4D/HMSN-Lom); p.C737_P738delinsX and p.R1109X mutations in the SH3TC2 gene (CMT4C); and a G>C change in a novel alternative untranslated exon in the HK1 gene causative of CMT4G (CMT4G/HMSN-Russe). Here we address the findings of a genetic study of 29 Gypsy Spanish families with autosomal recessive demyelinating CMT. The most frequent form is CMT4C (57.14%), followed by HMSN-Russe (25%) and HMSN-Lom (17.86%). The relevant frequency of HMSN-Russe has allowed us to investigate in depth the genetics and the associated clinical symptoms of this CMT form. HMSN-Russe probands share the same haplotype confirming that the HK1 g.9712G>C is a founder mutation, which arrived in Spain around the end of the 18th century. The clinical picture of HMSN-Russe is a progressive CMT disorder leading to severe weakness of the lower limbs and prominent distal sensory loss. Motor nerve conduction velocity was in the demyelinating or intermediate range.
Charcot-Marie-Tooth (CMT) disease type 4 (CMT4) is the name given to autosomal recessive forms of hereditary motor and sensory neuropathy (HMSN). When we began this study, three genes or loci associated with inherited peripheral neuropathies had already been identified in the European Gypsy population: HMSN-Lom (MIM 601455), HMSN-Russe (MIM 605285) and the congenital cataracts facial dysmorphism neuropathy syndrome (MIM 604168). We have carried out genetic analyses in a series of 20 Spanish Gypsy families diagnosed with a demyelinating CMT disease compatible with an autosomal recessive trait. We found the p.R148X mutation in the N-myc downstream-regulated gene 1 gene to be responsible for the HMSN-Lom in four families and also possible linkage to the HMSN-Russe locus in three others. We have also studied the CMT4C locus because of the clinical similarities and showed that in 10 families, the disease is caused by mutations located on the SH3 domain and tetratricopeptide repeats 2 (SH3TC2) gene: p.R1109X in 20 out of 21 chromosomes and p.C737_P738delinsX in only one chromosome. Moreover, the SH3TC2 p.R1109X mutation is associated with a conserved haplotype and, therefore, may be a private founder mutation for the Gypsy population. Estimation of the allelic age revealed that the SH3TC2 p.R1109X mutation may have arisen about 225 years ago, probably as the consequence of a bottleneck.
Charcot-Marie-Tooth disease type 4D (CMT4D) is an autosomal recessive demyelinating polyneuropathy, associated with deafness exclusively found in Gypsies and resulting from a homozygous R148X mutation in the N-myc downstream-regulated gene 1 (NDRG1). We report the detailed phenotypic study of a family without Gypsy ancestry, who presented with severe demyelinating polyneuropathy, deafness, subcortical white matter abnormalities on brain magnetic resonance imaging studies, and the R148X mutation in NDRG1. For the first time, central nervous system white matter lesions are demonstrated in CMT4D. This report extends the clinical knowledge of CMT4D and indicates that the role of the R148X mutation in NDRG1 in the central nervous system should be further studied.
In a previous study, we have shown that N-myc downstream-regulated gene 1 (NDRG1), classified in databases as a tumor suppressor and heavy metal-response protein, is mutated in hereditary motor and sensory neuropathy Lom (HMSNL), a severe autosomal recessive form of Charcot-Marie-Tooth (CMT) disease. The private founder mutation R148X, causing HMSNL in patients of Romani ethnicity, has so far remained the only molecular defect linking NDRG1 to a specific disease phenotype. Here we report the first study aiming to assess the overall contribution of this gene to the pathogenesis of peripheral neuropathies, in cases where the most common causes of CMT disease have been excluded. Sequence analysis of NDRG1 in 104 CMT patients of diverse ethnicity identified one novel disease-causing mutation, IVS8-1G>A (g.2290787G>A), which affects the splice-acceptor site of IVS8 and results in the skipping of exon 9. The phenotype of the IVS8-1G>A homozygote was very closely related to that of HMSNL patients. In addition, we have detected homozygosity for the known R148X mutation in two affected individuals. Mutations in NDRG1 thus accounted for 2.88% of our overall group of patients, and for 4.68% of cases with demyelinating neuropathies. No other variants were identified in the coding sequence, whereas 12 single nucleotide polymorphisms were observed in the introns. Hum Mutat 22:129-135, 2003.
Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused research on the mechanisms of early development, cell differentiation, and cell-cell interactions in the peripheral nervous system. Autosomal recessive peripheral neuropathies are relatively rare but are clinically more severe than autosomal dominant forms of CMT, and understanding their molecular basis may provide a new perspective on these mechanisms. Here we report the identification of the gene responsible for hereditary motor and sensory neuropathy-Lom (HMSNL). HMSNL shows features of Schwann-cell dysfunction and a concomitant early axonal involvement, suggesting that impaired axon-glia interactions play a major role in its pathogenesis. The gene was previously mapped to 8q24.3, where conserved disease haplotypes suggested genetic homogeneity and a single founder mutation. We have reduced the HMSNL interval to 200 kb and have characterized it by means of large-scale genomic sequencing. Sequence analysis of two genes located in the critical region identified the founder HMSNL mutation: a premature-termination codon at position 148 of the N-myc downstream-regulated gene 1 (NDRG1). NDRG1 is ubiquitously expressed and has been proposed to play a role in growth arrest and cell differentiation, possibly as a signaling protein shuttling between the cytoplasm and the nucleus. We have studied expression in peripheral nerve and have detected particularly high levels in the Schwann cell. Taken together, these findings point to NDRG1 having a role in the peripheral nervous system, possibly in the Schwann-cell signaling necessary for axonal survival.
        
Title: Hypoxia induces the expression of a 43-kDa protein (PROXY-1) in normal and malignant cells Park H, Adams MA, Lachat P, Bosman F, Pang SC, Graham CH Ref: Biochemical & Biophysical Research Communications, 276:321, 2000 : PubMed
This study was designed to determine the expression of cellular factors that may participate in phenotypic changes that occur under conditions of hypoxia. Using the RT-PCR differential display method, we isolated a cDNA fragment corresponding to a gene whose expression was induced in trophoblast and breast carcinoma cells cultured under 1 or 2% oxygen vs 4% oxygen or higher. This gene encodes a 43-kDa protein initially identified in homocysteine-treated endothelial cells and later shown to be upregulated in various human and mouse cell types (termed RTP, Drg1, Cap43, rit42, Ndr1). Herein we refer to this gene product as PROXY-1, for Protein Regulated by OXYgen-1. Elevated mRNA and protein levels were first observed in cells cultured in 1% oxygen for 8 h. Although PROXY-1 mRNA levels returned to near-control values within 2 h of reexposure to 20% oxygen, protein levels remained high 72 h after reexposure to 20% oxygen. Treatment of cells with hypoxia mimics such as cobalt or iron chelators also increased PROXY-1 expression. Moreover, presence of 30% carbon monoxide in the hypoxic atmosphere abrogated the upregulation of PROXY-1 expression. These findings suggest that hypoxia upregulates PROXY-1 levels through a heme protein-dependent pathway and that assessment of PROXY-1 expression may be of potential use in evaluating tissue hypoxia.
Ultrastructural observations have been made on nerve biopsy specimens from five cases of hereditary motor and sensory neuropathy-Lom (HMSNL). A number of features that distinguish it from other hereditary demyelinating neuropathies were identified. Teased fibre studies were not feasible but examination of longitudinal sections by electron microscopy demonstrated demyelination/remyelination. Severe progressive axonal loss was a conspicuous feature. There was no indication of axonal atrophy. Hypertrophic onion bulb changes were present in the younger patients which later regressed, probably secondary to axonal loss. Myelin thickness was generally reduced in relation to axon diameter, indicating hypomyelination, and partial ensheathment of axons by Schwann cells was observed. The Schmidt-Lanterman incisures were atypical in extending for long lengths along the internode. Uncompacted myelin with a periodicity greater than that observed in other neuropathies in which it occurs was a feature, as was the accumulation of pleomorphic material in the adaxonal Schwann cell cytoplasm. An unusual finding was the presence of intra-axonal accumulations of irregularly arranged curvilinear profiles. These resemble those that have been described in experimental vitamin E deficiency. The amount of endoneurial collagen was markedly increased and some endoneurial blood vessels showed a non-specific basal laminal reduplication.
        
Title: Differential expression of the RTP/Drg1/Ndr1 gene product in proliferating and growth arrested cells Piquemal D, Joulia D, Balaguer P, Basset A, Marti J, Commes T Ref: Biochimica & Biophysica Acta, 1450:364, 1999 : PubMed
Using a differential display method to identify differentiation-related genes in human myelomonocytic U937 cells, we cloned the cDNA of a gene identical to Drg1 and homologous to other recently discovered genes, respectively human RTP and Cap43 and mouse Ndr1 and TDD5 genes. Their open reading frames encode proteins highly conserved between mouse and man but which do not share homology with other know proteins. Conditions in which mRNAs are up-regulated suggest a role for the protein in cell growth arrest and terminal differentiation. We raised antibodies against a synthetic peptide reproducing a characteristic sequence of the putative polypeptide chain. These antibodies revealed a protein with the expected 43 kDa molecular mass, up-regulated by phorbol ester, retinoids and 1,25-(OH)2 vitamin D3 in U937 cells. It was increased in mammary carcinoma MCF-7 cells treated by retinoids and by the anti-estrogen ICI 182,780 but not by 4-hydroxytamoxifen. The mouse Drg1 homologous protein was up-regulated by retinoic acid in C2 myogenic cells. The diversity of situations in which expression of RTP/Drg1/Ndr1 has now been observed shows that it is widely distributed and up-regulated by various agents. Here we show that ligands of nuclear transcription factors involved in cell differentiation are among the inducers of this novel protein.
        
Title: N-myc-dependent repression of ndr1, a gene identified by direct subtraction of whole mouse embryo cDNAs between wild type and N-myc mutant Shimono A, Okuda T, Kondoh H Ref: Mech Dev, 83:39, 1999 : PubMed
To identify genes regulated by N-myc, subtraction of whole embryo cDNA was carried out between wild type and N-myc-deficient mutant mice. Six cDNA clones were isolated as representing genes expressed higher in the mutant embryos and two as those expressed lower. One of them, Ndr1, coding for 43 kDa cytoplasmic protein was studied in detail. The Ndr1 gene was augmented 20-fold in the mutant embryos at 10.5 days post coitus which is indicative of repression by N-myc. An inverse relationship actually existed between the expression of N-myc and Ndr1 in various developing tissues of the wild type embryos. In the early stage of differentiation of these tissues when N-myc expression was high Ndr1 expression was low or undetectable, and later when N-myc activity diminished Ndr1 expression was augmented concomitantly with the occurrence of terminal differentiation. To establish the direct link between N-myc activity and the Ndr1 regulation, the Ndr1 gene was cloned and analyzed. The Ndr1 promoter activity was down-regulated by N-myc, and more strongly by the combination of N-myc and Max in the cotransfection assay. This repressive effect was mediated by the promoter region within 52 base pairs from the transcription start site but direct binding of N-myc:Max to the promoter sequence was not demonstrated, which is analogous to the cases recently reported for transcriptional repression by c-myc. c-myc also repressed Ndr1 promoter activity similarly to N-myc. The effect of N-myc:Max was sensitive to Trichostatin A, indicating involvement of histone deacetylase activity in repression of the Ndr1 promoter. The strategy we adopted in identifying target genes of a transcription factor should prove widely applicable when mutant animals are available.
A previously unrecognized neuropathy was identified in Bulgarian gypsies, and was designated hereditary motor and sensory neuropathy-Lom (HMSNL) after the town where the initial cases were found. It was subsequently identified in other gypsy communities. The disorder, which is of autosomal recessive inheritance, was mapped to chromosome 8q24. It begins consistently in the first decade of life with gait disorder followed by upper limb weakness in the second decade and, in most subjects, by deafness which is most often first noticed in the third decade. Sensory loss affecting all modalities is present, both this and the motor involvement predominating distally in the limbs. Skeletal deformity, particularly foot deformity, is frequent. Severely reduced motor nerve conduction velocity indicates a demyelinating basis, which was confirmed by nerve biopsy. The three younger patients biopsied showed a hypertrophic 'onion bulb' neuropathy. The hypertrophic changes were not evident in the oldest individual biopsied and it is likely that they had regressed secondarily to axon loss. In the eight cases in which brainstem auditory evoked potentials could be recorded, the results suggested demyelination in the eighth cranial nerve and also abnormal conduction in the central auditory pathways in the brainstem. As no myelin genes are known to be located at chromosome 8q24, the disorder may involve a gene for a novel myelin protein or be due to an abnormality of axon-Schwann cell signalling.
We describe a form of hereditary motor and sensory neuropathy (HMSN) affecting four siblings in an Italian family of Gypsy ethnic origin with both clinical and pathological findings very reminiscent of the HMSN Lom type (HMSNL), recently described in a group of Bulgarian Gypsies. Genetic analysis demonstrated linkage to chromosome 8q24 and conserved haplotypes in the HMSNL region, thus confirming that this is the first Gypsy family outside the Balkans suffering from the same disorder.
        
Title: Cap43, a novel gene specifically induced by Ni2+ compounds Zhou D, Salnikow K, Costa M Ref: Cancer Research, 58:2182, 1998 : PubMed
To better understand the molecular mechanism(s) involved in the essentiality, toxicity, and/or carcinogenicity of nickel compounds, a mRNA differential display technique was used to identify gene(s) that were specifically induced by these carcinogens. Differential expression of several genes was observed in human lung A549 cells exposed to nickel subsulfide. One gene, Cap43, which expressed a 3.0-kb mRNA encoding a Mr 43,000 protein, was found to be induced within 4-6 h by either Ni3S2 or NiCl2 in A549 cells and attained a level as high as 30-fold within 24-36 h of treatment. Twelve other tested metal compounds failed to induce Cap43 expression, leading to the conclusion that, with regard to metals, the induction of this gene was nickel-specific. Oxidative stress that is often caused by metals and heat shock did not induce Cap43 further, suggesting a specific nature in the signaling pathway involved in Cap43 induction. Activation of signaling pathways with vanadate did not induce Cap43 nor did trifluoperazine block its induction by nickel; however, okadaic acid, a serine/threonine phosphatase inhibitor, induced Cap43 to a greater extent than any nickel compound tested. Homocysteine did not induce Cap43 in a number of cell lines, with the exception of human endothelial cells. The Cap43 gene was found to be induced by nickel not only in all tested human and rodent cell lines in vitro but also in several rat organs after oral exposure to NiCl2. We have found that the primary signal for Cap43 induction was an elevation of free intracellular Ca2+ caused by Ni2+ exposure because Cap43 was induced by calcium ionophores and its induction was attenuated by bis-(O-aminophenyl)-ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)-ester, a chelator of intracellular Ca2+. We found that the Cap43 gene was evolutionarily conserved and similarly regulated in humans, mice, and rats. Recent studies have shown that Cap43 is expressed at lower levels in colon cancer. Further studies of Cap43 regulation by Ca2+ should enhance our understanding of the role of Cap43 in cell function and cancer pathogenesis.
To identify new molecular markers for differentiation of normal and neoplastic colon epithelium, we have studied changes in gene expression during the in vitro differentiation of the HT29-D4 colon carcinoma cell line. Using a modified differential display procedure, we cloned a novel cDNA, designated differentiation-related gene 1 (Drg1). Drg1 mRNA has a length of approximately 3 kb and is induced approximately 20-fold during in vitro differentiation of the colon carcinoma cell lines HT29-D4 and Caco-2. The absence of Drg1 induction in growth-inhibited A431 epidermoid carcinoma cells indicates that Drg1 up-regulation in colon carcinoma cells is not a result of decreased proliferation. The Drg1 cDNA contains an open-reading frame of 1182 bp that encodes a protein with a predicted molecular weight of 43 kd. Drg1 mRNA is expressed most prominently in placental membranes and prostate, kidney, small intestine, and ovary tissues. Compared to normal colon mucosa, Drg1 mRNA expression is decreased in colon adenomas and adenocarcinomas. An antiserum raised against recombinant Drg1 protein detected a band of the expected size in Western blots. Immunohistochemistry showed that in normal colon Drg1 protein is expressed in the cytoplasm and basolateral membranes of surface epithelial cells that border the gut lumen, indicating that Drg1 protein is expressed late during differentiation, just before apoptosis and shedding of cells into the colon lumen.
The Patient is a 55-year-old black male who belongs to a large family with 9 affected relatives with autosomal dominant Dejerine-Sottas neuropathy (DSN). Onset of his condition was at 2 years of age with steppage gait followed by severe progressive weakness, atrophy, and sensory loss of his legs and hands accompanied by areflexia and thoracolumbar kyphoscoliosis. The patient became wheelchair confined at age 38. At around age 42, the left shoulder became dislocated and the humeral head underwent aseptic necrosis (Charcot joint). Nerve conduction studies showed absent motor and sensory responses for all major nerves tested. Genetic linkage suggested mapping of this DSN gene on chromosome 8qter. A younger brother with similar neurological findings also demonstrated Charcot joints with bone destruction of the joints of the fourth and fifth fingers.
Founder effect and linkage disequilibrium have been successfully exploited to map single gene disorders, and the study of isolated populations is emerging as a major approach to the investigation of genetically complex diseases. In the search for genetic isolates ranging from Pacific islands to Middle East deserts, the 10 million Gypsies resident in Europe have largely escaped the attention of geneticists. Because of their geographical ubiquity, lack of written history and the presumed social and cultural nature of their isolation, Gypsies are construed as not meeting the criteria for a well defined founder population. Gypsy society has a complex structure with subdivisions and stratifications that are incomprehensible to the surrounding populations. Marginalization by the health care systems in most countries results in a lack of information on causes of morbidity and mortality and little is known about hereditary disorders or the population genetic characteristics of Gypsies. This study is the first example of mapping a disease gene in endogamous Gypsy groups. Using lod score analysis and linkage disequilibrium, we have located a novel demyelinating neuropathy to a narrow interval on chromosome 8q24. We show that the disease, occurring in Gypsy groups of different identity and history of migrations, is caused by a single mutation whose origin predates the divergence of these groups.
        
Title: Homocysteine-respondent genes in vascular endothelial cells identified by differential display analysis. GRP78/BiP and novel genes Kokame K, Kato H, Miyata T Ref: Journal of Biological Chemistry, 271:29659, 1996 : PubMed
An elevated blood level of homocysteine is associated with arteriosclerosis and thrombosis. The mechanisms by which homocysteine may promote vascular diseases have not been elucidated yet. In the present study, we have applied a modified nonradioactive differential display analysis to evaluate changes in gene expression induced by homocysteine treatment of cultured human umbilical vein endothelial cells (HUVEC). We identified six up-regulated and one down-regulated genes. One up-regulated gene was GRP78/BiP, a stress protein, suggesting that misfolded proteins would accumulate in the endoplasmic reticulum because of redox potential changes caused by homocysteine. Another up-regulated gene encoded a bifunctional enzyme with activities of methylenetetrahydrofolate dehydrogenase and methenyltetrahydrofolate cyclohydrolase, which is involved in a homocysteine metabolism. A third up-regulated gene encoded activating transcription factor 4, and a fourth was a gene whose function is not identified yet. The remaining three were novel genes. We isolated a full-length cDNA of one of the up-regulated genes from a HUVEC library. It encoded a novel protein with 394 amino acids, which was termed reducing agents and tunicamycin-responsive protein (RTP). Northern blot analysis revealed that RTP gene expression was induced in HUVEC after 4 h incubation with homocysteine. RTP mRNA was also observed in unstimulated cells and induced by not only homocysteine but also 2-mercaptoethanol and tunicamycin. The mRNA was ubiquitously expressed in human tissues. These observations indicate that homocysteine can alter the expressivity of multiple genes, including a stress protein and several novel genes. These responses may contribute to atherogenesis.