3 reference(s) found. Listing paper details in reverse chronological order. We are grateful to Keith Bradnam for improvment of this script
Title: Chemical identification of 18-hydroxycarlactonoic acid as an LjMAX1 product and in planta conversion of its methyl ester to canonical and non-canonical strigolactones in Lotus japonicus Mori N, Sado A, Xie X, Yoneyama K, Asami K, Seto Y, Nomura T, Yamaguchi S, Akiyama K Ref: Phytochemistry, 174:112349, 2020 : PubMed
Strigolactones (SLs) are a group of plant apocarotenoids that act as rhizosphere signaling molecules for both arbuscular mycorrhizal fungi and root parasitic plants. They also regulate plant architecture as phytohormones. The model legume Lotus japonicus (synonym of Lotus corniculatus) produces canonical 5-deoxystrigol (5DS) and non-canonical lotuslactone (LL). The biosynthesis pathways of the two SLs remain elusive. In this study, we characterized the L. japonicus MAX1 homolog, LjMAX1, found in the Lotus japonicus genome assembly build 2.5. The L. japonicus max1 LORE1 insertion mutant was deficient in 5DS and LL production. A recombinant LjMAX1 protein expressed in yeast microsomes converted carlactone (CL) to 18-hydroxycarlactonoic acid (18-OH-CLA) via carlactonoic acid (CLA). Identity of 18-OH-CLA was confirmed by comparison of the methyl ester derivative of the MAX1 product with chemically synthesized methyl 18-hydroycarlactonoate (18-OH-MeCLA) using LC-MS/MS. (11R)-CL was detected as an endogenous compound in the root of L. japonicus.(13)C-labeled CL, CLA, and 18-OH-MeCLA were converted to [(13)C]-5DS and LL in plant feeding experiments using L. japonicus WT. These results showed that LjMAX1 is the crucial enzyme in the biosynthesis of Lotus SLs and that 18-hydroxylated carlactonoates are possible precursors for SL biosynthesis in L. japonicus.
        
Title: Identification of two oxygenase genes involved in the respective biosynthetic pathways of canonical and non-canonical strigolactones in Lotus japonicus Mori N, Nomura T, Akiyama K Ref: Planta, 251:40, 2020 : PubMed
A cytochrome P450 and a 2-oxoglutarate-dependent dioxygenase genes responsible, respectively, for the biosyntheses of canonical and non-canonical strigolactones in Lotus japonicus were identified by transcriptome profiling and mutant screening. Strigolactones (SLs) are a group of apocarotenoids with diverse structures that act as phytohormones and rhizosphere signals. The model legume Lotus japonicus produces both canonical and non-canonical SLs, 5-deoxystrigol (5DS) and lotuslactone (LL), respectively, through oxidation of a common intermediate carlactone by the cytochrome P450 (CYP) enzyme MAX1. However, the pathways downstream of MAX1 and the branching point in the biosyntheses of 5DS and LL have not been elucidated. Here, we identified a CYP and a 2-oxoglutarate-dependent dioxygenase (2OGD) genes responsible, respectively, for the formation of Lotus SLs by transcriptome profiling using RNA-seq and screening of SL-deficient mutants from the Lotus retrotransposon 1 (LORE1) insertion mutant resource. The CYP and 2OGD genes were named DSD and LLD, respectively, after 5DS or LL defective phenotype of the mutants. The involvements of the genes in Lotus SL biosyntheses were confirmed by restoration of the mutant phenotype using Agrobacterium rhizogenes-mediated transformation to generate transgenic roots expressing the coding sequence. The transcript levels of DSD and LLD in roots as well as the levels of 5DS and LL in root exudates were reduced by phosphate fertilization and gibberellin treatment. This study can provide the opportunity to investigate how and why plants produce the two classes of SLs.
Root exudates from Lotus japonicus were found to contain at least three different hyphal branching-inducing compounds for the arbuscular mycorrhizal (AM) fungus Gigaspora margarita, one of which had been previously identified as (+)-5-deoxystrigol (5DS), a canonical strigolactone (SL). One of the two remaining unknown hyphal branching inducers was purified and named lotuslactone. Its structure was determined as methyl (E)-2-(3-acetoxy-2-hydroxy-7-methyl-1-oxo-1,2,3,4,5,6-hexahydroazulen-2-yl)-3-(((R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)acrylate, by 1D and 2D NMR spectroscopy, and HR-ESI- and EI-MS. Although lotuslactone, a non-canonical SL, contains the AB-ring and the enol ether-bridged D-ring, it lacks the C-ring and has a seven-membered cycloheptadiene in the A-ring part as in medicaol, a major SL of Medicago truncatula. Lotuslactone was much less active than 5DS, but showed comparable activity to methyl carlactonoate (MeCLA) in inducing hyphal branching of G. margarita. Other natural non-canonical SLs including avenaol, heliolactone, and zealactone (methyl zealactonoate) were also found to be moderate to weak inducers of hyphal branching in the AM fungus. Lotuslactone strongly elicited seed germination in Phelipanche ramosa and Orobanche minor, but Striga hermonthica seeds were 100-fold less sensitive to this stimulant.