4 reference(s) found. Listing paper details in reverse chronological order. We are grateful to Keith Bradnam for improvment of this script
Title: LC-MS/MS assay of fluoropezil and its two major metabolites in human plasma: an application to pharmacokinetic studies Guo R, Hu J, Jing J, Liu Y, Li J, Zhou Y, Liu H, Zhou L, Chen X Ref: Bioanalysis, 14:817, 2022 : PubMed
Background: LC-MS/MS methods were developed for pharmacokinetic analysis and verified to measure fluoropezil, a new AchE inhibitor for Alzheimer's disease treatment, and its two primary metabolites (N-debenzyl fluoride fluoropezil [M1] and N-oxidized fluoropezil [M11]) in human plasma. Methods & results: Analytes were extracted from 50 microl plasma using protein precipitation and separated by HPLC using a bridged ethyl hybrid column and gradient elution procedure. Analytical detection was performed with a triple quadrupole mass spectrometer and electrospray ionization source in multiple reaction monitoring mode. The LC-MS/MS method was fully validated. The quantification linear ranges were 0.100-50.0 ng/ml (fluoropezil), 0.0500-25.0 ng/ml (M1) and 0.0500-25.0 ng/ml (M11). Conclusion: A sensitive, reliable LC-MS/MS method was established and used successfully to explore the pharmacokinetics of fluoropezil.
A series of sulfone analogs of donepezil were designed and synthesized as novel acetylcholinesterase (AChE) inhibitors with the potent inhibiting Abeta aggregation and providing neuroprotective effects as potential modalities for Alzheimer's disease (AD). Most of the target compounds displayed effective inhibition of AChE, especially compound 24r which displayed powerful inhibitory activity (IC(50) = 2.4 nM). Kinetic and docking studies indicated that compound 24r was a mixed-type inhibitor. Furthermore, in glyceraldehyde (GA)-exposed SH-SY5Y differentiated neuronal cells, compound 24r could potently inhibit AChE, reduce tau phosphorylation at S396 residue, provide neuroprotection by rescuing neuronal morphology and increasing cell viability. It was also found to reduce amyloid aggregation in the presence of AChE. In addition, compound 24r showed evident protections from mitochondrial membrane dysfunction and oxidative stress in okadaic acid-induced pharmacological models. Moreover, compound 24r exhibited more effective treatment prospects in vivo than donepezil, including a moderate blood-brain barrier permeability, a more potent AChE inhibitory activity and behavioral improvement in scopolamine-induced cognition-impaired mice model at a much lower dose. Collectively, compound 24r is a promising lead compound for further investigation to discovery and development of new anti-AD agents.
https://www.researchsquare.com/article/rs-1744060/latest.pdf
Background
Acetylcholinesterase (AChE) inhibitors attempt to reduce the breakdown of acetylcholine levels in the brain of patients with Alzheimers disease (AD) by inhibiting the responsible enzyme AChE in the synaptic cleft. This study evaluated the safety, tolerability, and pharmacokinetics of fluoropezil (DC20), a novel AChE inhibitor under development for the treatment of AD in healthy young and elderly Chinese subjects.
Methods
The study on young subjects were divided into two arms: the multiple ascending-dose (MAD) arm (double-blind, randomized, placebo-controlled, multiple ascending-dose, 2 and 6 mg, N = 24), and the food effect arm (three-period, self-crossover, open-labeled, fasting/standard diet/high-fat diet administration, 4 mg, N = 12). A two-period, self-crossover, open-labeled, single ascending-dose study was designed for elderly subjects (2 and 4 mg, N = 11).
Results
For young subjects study: In the MAD arm, the accumulation ratios of DC20 in vivo were 2.29 and 2.15, respectively. In the food effect arm, compared with fasting administration, area under the concentrationtime curve from zero to t (AUC0-t) orally after a standard diet and high-fat diet slightly increased by about
19% and 29% and the Tmax were delayed by around 1 hour. For elderly subjects study, Tmax were 1.5 and 1.25 hour, t1/2 were 77.1 and 74.2 hour, respectively. After oral administration of DC20 in healthy young and elderly subjects, no serious adverse events occurred, the most common adverse events associated with the study drug were gastrointestinal reactions.
Conclusion
We predicted the safety risks of DC20 in the clinical treatment of AD, which were well tolerated by the healthy young and elderly subjects. The elimination of DC20 from the body was slower in elderly subjects than in young subjects.
        
Title: Desorption electrospray ionization (DESI) source coupling ion mobility mass spectrometry for imaging fluoropezil (DC20) distribution in rat brain Guo R, Zhou L, Chen X Ref: Anal Bioanal Chem, 413:5835, 2021 : PubMed
Fluoropezil (DC20) is a new selective acetylcholinesterase inhibitor, and it was developed for the treatment of Alzheimer's disease patients. In this study, a desorption electrospray ionization source coupling ion mobility mass spectrometry imaging (DESI/IMS-MSI) method was developed to explore the distribution of DC20 in brain tissue following oral administration. Rat brain coronal slices obtained 1 h and 3 h following drug dosing were used in the study. D6-DC20 was used as internal standard and sprayed by matrix sprayer on the brain slices to calibrate the matrix effect. Ion mobility separation was used to reduce the interference from background noise and the biological matrix. By optimizing DESI-MSI parameters for improved sensitivity, the limit of quantitation of the method was 1.45 pg/mm(2) with a linear range from 1.45 to 72.7 pg/mm(2). DESI-MSI data showed that DC20 could quickly enter and diffuse across whole brain and tended to be much more enriched in striatum than cerebral cortex and hippocampus, which was consistent with quantitative analysis using high-performance liquid chromatography-electrospray tandem mass spectrometry to measure DC20 concentration in each homogenized brain sub-region. The workflow of tissue imaging method optimization and strategy were established, and for the first time, the DESI-MSI technique and optimized method were used to explore the distribution characteristics of DC20 in rat brain, which could help elucidate pharmacological effect mechanisms and improve clinical outcomes.