The genomes of Corynebacteriales contain several genes encoding mycoloyltransferases (Myt) that are specific cell envelope enzymes essential for the biogenesis of the outer membrane. MytA is a major mycoloyltransferase of Corynebacterium glutamicum, displaying an N-terminal domain with esterase activity and a C-terminal extension containing a conserved repeated LGFP sequence motif of unknown function. This motif is highly conserved in Corynebacteriales and found associated with cell wall hydrolases and with proteins of unknown function. In this study, we determined the crystal structure of MytA and found that its C-terminal domain is composed of five LGFP motifs and forms a long stalk perpendicular to the N-terminal catalytic alpha/beta-hydrolase domain. The LGFP motifs are composed of a 4-stranded beta-fold and occupy alternating orientations along the axis of the stalk. Multiple acetate binding pockets were identified in the stalk, which could correspond to putative ligand binding sites. By using various MytA mutants and complementary in vitro and in vivo approaches, we provide evidence that the C-terminal LGFP domain interacts with the cell wall peptidoglycan-arabinogalactan polymer. We also show that the C-terminal LGFP domain is not required for the activity of MytA but rather contributes to the overall integrity of the cell envelope.
We have previously described the posttranslational modification of pore-forming small proteins of Corynebacterium by mycolic acid, a very-long-chain alpha-alkyl and beta-hydroxy fatty acid. Using a combination of chemical analyses and mass spectrometry, we identified the mycoloyl transferase (Myt) that catalyzes the transfer of the fatty acid residue to yield O-acylated polypeptides. Inactivation of corynomycoloyl transferase C (cg0413 [Corynebacterium glutamicum mytC {CgmytC}]), one of the six Cgmyt genes of C. glutamicum, specifically abolished the O-modification of the pore-forming proteins PorA and PorH, which is critical for their biological activity. Expectedly, complementation of the cg0413 mutant with either the wild-type gene or its orthologues from Corynebacterium diphtheriae and Rhodococcus, but not Nocardia, fully restored the O-acylation of the porins. Consistently, the three-dimensional structure of CgMytC showed the presence of a unique loop that is absent from enzymes that transfer mycoloyl residues onto both trehalose and the cell wall arabinogalactan. These data suggest the implication of this structure in the enzyme specificity for protein instead of carbohydrate.
Yhr049w/FSH1 was recently identified in a combined computational and experimental proteomics analysis for the detection of active serine hydrolases in yeast. This analysis suggested that FSH1 might be a serine-type hydrolase belonging to the broad functional alphabeta-hydrolase superfamily. In order to get insight into the molecular function of this gene, it was targeted in our yeast structural genomics project. The crystal structure of the protein confirms that it contains a Ser/His/Asp catalytic triad that is part of a minimal alpha/beta-hydrolase fold. The architecture of the putative active site and analogies with other protein structures suggest that FSH1 may be an esterase. This finding was further strengthened by the unexpected presence of a compound covalently bound to the catalytic serine in the active site. Apparently, the enzyme was trapped with a reactive compound during the purification process.
Colipase is a small protein cofactor needed by pancreatic lipase for the efficient dietary lipid hydrolysis. It binds to the C-terminal, non-catalytic domain of lipase, thereby stabilising an active conformation and considerably increasing the overall hydrophobic binding site. Structural studies of the complex and of colipase alone have clearly revealed the functionality of its architecture. Interestingly, a structural analogy has recently been discovered between colipase and a domain in a developmental protein (Dickkopf), based on sequence analogy and homology modeling. Whether this structural analogy implies a common function (lipid interaction) remains to be clarified. Structural analogies have also been recognised between the pancreatic lipase C-terminal domain, the N-terminal domains of lipoxygenases and the C-terminal domain of alpha-toxin. These non-catalytic domains in the latter enzymes are important for interaction with membranes. It has not been established if these domains are also involved in eventual protein cofactor binding as is the case for pancreatic lipase.
The classical human pancreatic lipase (HPL), the guinea pig pancreatic lipase-related protein 2 (GPLRP2) and the phospholipase A1 from hornet venom (DolmI PLA1) illustrate three interesting steps in the molecular evolution of the pancreatic lipase gene family towards different substrate selectivities. Based on the known 3D structures of HPL and a GPLRP2 chimera, as well as the modeling of DolmI PLA1, we review here the structural features and the kinetic properties of these three enzymes for a better understanding of their structure-function relationships. HPL displays significant activity only on triglycerides, whereas GPLRP2 displays high phospholipase and galactolipase activities, together with a comparable lipase activity. GPLRP2 shows high structural homology with HPL with the exception of the lid domain which is made of five amino acid residues (mini-lid) instead of 23 in HPL. The lid domain deletion in GPLRP2 allows the free access to the active site and reduces the steric hindrance towards large substrates, such as galactolipids. The role of the lid domain in substrate selectivity has been investigated by site-directed mutagenesis and the substitution of HPL and GPLRP2 lid domains. The addition of a large-size lid domain in GPLRP2 increases the substrate selectivity for triglycerides by depressing the phospholipase activity. The phospholipase activity is, however, not induced in the case of the HPL mutant with GPLRP2 mini-lid. Therefore, the presence of a full-length lid domain is not the unique structural feature explaining the absence of phospholipase activity in HPL. The 3D structure of the GPLRP2 chimera and the model of DolmI PLA1 reveal a higher hydrophilic/lipophilic balance (HLB) of the surface loops (beta5 loop, beta9 loop, lid domain) surrounding the active site, as compared to the homologous loops in HPL. This observation provides a potential explanation for the ability of GPLRP2 and DolmI PLA1 to hydrolyze polar lipids, such as phospholipids. In conclusion, the beta5 loop, the beta9 loop, and the lid domain play an essential role in substrate selectivity towards triglycerides, phospholipids and galactolipids.
Pancreatic lipase belongs to the serine esterase family and can therefore be inhibited by classical serine reagents such as diisopropyl fluoride or E600. In an attempt to further characterize the active site and catalytic mechanism, we synthesized a C11 alkyl phosphonate compound. This compound is an effective inhibitor of pancreatic lipase. The crystal structure of the pancreatic lipase-colipase complex inhibited by this compound was determined at a resolution of 2.46 A and refined to a final R-factor of 18.3%. As was observed in the case of the structure of the ternary pancreatic lipase-colipase-phospholipid complex, the binding of the ligand induces rearrangements of two surface loops in comparison with the closed structure of the enzyme (van Tilbeurgh et al., 1993b). The inhibitor, which could be clearly observed in the active site, was covalently bound to the active site serine Ser152. A racemic mixture of the inhibitor was used in the crystallization, and there exists evidence that both enantiomers are bound at the active site. The C11 alkyl chain of the first enantiomer fits into a hydrophobic groove and is though to thus mimic the interaction between the leaving fatty acid of a triglyceride substrate and the protein. The alkyl chain of the second enantiomer also has an elongated conformation and interacts with hydrophobic patches on the surface of the open amphipathic lid. This may indicate the location of a second alkyl chain of a triglyceride substrate. Some of the detergent molecules, needed for the crystallization, were also observed in the crystal. Some of them were located at the entrance of the active site, bound to the hydrophobic part of the lid. On the basis of this crystallographic study, a hypothesis about the binding mode of real substrates and the organization of the active site is proposed.
Colipase (Mr 10 kDa) confers catalytic activity to pancreatic lipase under physiological conditions (high bile salt concentrations). Previously determined 3-A-resolution X-ray structures of lipase-colipase complexes have shown that, in the absence of substrate, colipase binds to the noncatalytic C-terminal domain of pancreatic lipase (van Tilbeurgh H, Sarda L, Verger R, Cambillau C, 1992, Nature 359:159-162; van Tilbeurgh et al., 1993a, Nature 362:814-820). Upon lipid binding, conformational changes at the active site of pancreatic lipase bring a surface loop (the lid) in contact with colipase, creating a second binding site for this cofactor. Covalent inhibition of the pancreatic lipase by a phosphonate inhibitor yields better diffracting crystals of the lipase-colipase complex. From the 2.4-A-resolution structure of this complex, we give an accurate description of the colipase. It confirms the previous proposed disulfide connections (van Tilbeurgh H, Sarda L, Verger R, Cambillau C, 1992, Nature 359:159-162; van Tilbeurgh et al., 1993a, Nature 362:814-820) that were in disagreement with the biochemical assignment (Chaillan C, Kerfelec B, Foglizzo E, Chapus C, 1992, Biochem Biophys Res Commun 184:206-211). Colipase lacks well-defined secondary structure elements. This small protein seems to be stabilized mainly by an extended network of five disulfide bridges that runs throughout the flatly shaped molecule, reticulating its four finger-like loops. The colipase surface can be divided into a rather hydrophilic part, interacting with lipase, and a more hydrophobic part, formed by the tips of the fingers. The interaction between colipase and the C-terminal domain of lipase is stabilized by eight hydrogen bonds and about 80 van der Waals contacts. Upon opening of the lid, three more hydrogen bonds and about 28 van der Waals contacts are added, explaining the higher apparent affinity in the presence of a lipid/water interface. The tips of the fingers are very mobile and constitute the lipid interaction surface. Two detergent molecules that interact with colipase were observed in the crystal, covering part of the hydrophobic surface.
Cutinases, a group of cutin degrading enzymes with molecular masses of around 22-25 kDa (Kolattukudy, 1984), are also able to efficiently hydrolyse triglycerides (De Geus et al., 1989; Lauwereys et al., 1991), but without exhibiting the interfacial activation phenomenom (Sarda et al., 1958). They belong to a class of proteins with a common structural framework, called the alpha/beta hydrolase fold (Martinez et al., 1992; Ollis et al., 1992). We describe herein the structure of cutinase covalently inhibited by diethyl-p-nitrophenyl phosphate (E600) and refined at 1.9-A resolution. Contrary to what has previously been reported with lipases (Brzozowski et al., 1991; Derewenda et al., 1992; Van Tilbeurgh et al., 1993), no significant structural rearrangement was observed here in cutinase upon the inhibitor binding. Moreover, the structure of the active site machinery, consisting of a catalytic triad (S120, H188, D175) and an oxyanion hole (Q121 and S42), was found to be identical to that of the native enzyme, whereas the oxyanion hole of Rhizomucor lipase (Brzozowski et al., 1991; Derewenda et al., 1992), like that of pancreatic lipase (van Tilbeurgh et al., 1993), is formed only upon enzyme-ligand complex formation. The fact that cutinase does not display interfacial activation cannot therefore only be due to the absence of a lid but might also be attributable to the presence of a preformed oxyanion hole.
        
Title: Lipoprotein lipase. Molecular model based on the pancreatic lipase x-ray structure: consequences for heparin binding and catalysis van Tilbeurgh H, Roussel A, Lalouel JM, Cambillau C Ref: Journal of Biological Chemistry, 269:4626, 1994 : PubMed
Lipoprotein lipase and pancreatic lipase have about 30% sequence identity, suggesting a similar tertiary fold. Three-dimensional models of lipoprotein lipase were constructed, based upon two recently determined x-ray crystal structures of pancreatic lipase, in which the active site was in an open and closed conformation, respectively. These models allow us to propose a few hypotheses on the structural determinants of lipoprotein lipase which are responsible for heparin binding, dimer formation, and phospholipase activity. The folding of the protein assembles a number of positive charge clusters at the back of the molecule, opposite the active site. These clusters probably form the heparin binding site, as confirmed by recent site-directed mutagenesis experiments. The active sites of lipoprotein lipase and pancreatic lipase look very similar, except for the lid (a surface loop covering the catalytic serine in the inactive state). A different open (active) conformation of the lid in both enzymes may be responsible for their differing substrate specificities. Predictions of the nature of the lipoprotein lipase dimer remain elusive, although our model enabled us to propose a few possibilities.
The three-dimensional structure of the lipase-procolipase complex, co-crystallized with mixed micelles of phosphatidylcholine and bile salt, has been determined at 3 A resolution by X-ray crystallography. The lid, a surface helix covering the catalytic triad of lipase, adopts a totally different conformation which allows phospholipid to bind to the enzyme's active site. The open lid is an essential component of the active site and interacts with procolipase. Together they form the lipid-water interface binding site. This reorganization of the lid structure provokes a second drastic conformational change in an active site loop, which in its turn creates the oxyanion hole (induced fit).
Interfacial adsorption of pancreatic lipase is strongly dependent on the physical chemical properties of the lipid surface. These properties are affected by amphiphiles such as phospholipids and bile salts. In the presence of such amphiphiles, lipase binding to the interface requires a protein cofactor, colipase. We obtained crystals of the pancreatic lipase-procolipase complex and solved the structure at 3.04 A resolution. Here we describe the structure of procolipase, which essentially consists of three 'fingers' and is topologically comparable to snake toxins. The tips of the fingers contain most of the hydrophobic amino acids and presumably form the interfacial binding site. Lipase binding occurs at the opposite side to this site and involves polar interactions. Determination of the three-dimensional structure of pancreatic lipase has revealed the presence of two domains: an amino-terminal domain, at residues 1-336 containing the active site and a carboxy-terminal domain at residues 337-449 (ref. 6). Procolipase binds exclusively to the C-terminal domain of lipase. No conformational change in the lipase molecule is induced by the binding of procolipase.