Zorbaz TamaraInstitute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia CroatiaPhone : Fax : Send E-Mail to Zorbaz Tamara
Title: Altered levels of variant cholinesterase transcripts contribute to the imbalanced cholinergic signaling in Alzheimer's and Parkinson's disease Gok M, Madrer N, Zorbaz T, Bennett ER, Greenberg D, Bennett DA, Soreq H Ref: Front Mol Neurosci, 15:941467, 2022 : PubMed
Acetylcholinesterase and butyrylcholinesterase (AChE and BChE) are involved in modulating cholinergic signaling, but their roles in Alzheimer's and Parkinson's diseases (AD and PD) remain unclear. We identified a higher frequency of the functionally impaired BCHE-K variant (rs1803274) in AD and PD compared to controls and lower than in the GTEx dataset of healthy individuals (n = 651); in comparison, the prevalence of the 5'-UTR (rs1126680) and intron 2 (rs55781031) single-nucleotide polymorphisms (SNPs) of BCHE and ACHE's 3'-UTR (rs17228616) which disrupt AChE mRNA targeting by miR-608 remained unchanged. qPCR validations confirmed lower levels of the dominant splice variant encoding the "synaptic" membrane-bound ACHE-S in human post-mortem superior temporal gyrus samples from AD and in substantia nigra (but not amygdala) samples from PD patients (n = 79, n = 67) compared to controls, potentially reflecting region-specific loss of cholinergic neurons. In contradistinction, the non-dominant "readthrough" AChE-R mRNA variant encoding for soluble AChE was elevated (p < 0.05) in the AD superior temporal gyrus and the PD amygdala, but not in the neuron-deprived substantia nigra. Elevated levels of BChE (p < 0.001) were seen in AD superior temporal gyrus. Finally, all three ACHE splice variants, AChE-S, AChE-R, and N-extended AChE, were elevated in cholinergic-differentiated human neuroblastoma cells, with exposure to the oxidative stress agent paraquat strongly downregulating AChE-S and BChE, inverse to their upregulation under exposure to the antioxidant simvastatin. The multi-leveled changes in cholinesterase balance highlight the role of post-transcriptional regulation in neurodegeneration. (235).
        
Title: Cytotoxicity-related effects of imidazolium and chlorinated bispyridinium oximes in SH-SY5Y cells Zandona A, Zorbaz T, Mis K, Pirkmajer S, Katalinic M Ref: Arh Hig Rada Toksikol, 73:277, 2022 : PubMed
Current research has shown that several imidazolium and chlorinated bispyridinium oximes are cytotoxic and activate different mechanisms or types of cell death. To investigate this further, we analysed interactions between these oximes and acetylcholine receptors (AChRs) and how they affect several signalling pathways to find a relation between the observed toxicities and their effects on these specific targets. Chlorinated bispyridinium oximes caused time-dependent cytotoxicity by inhibiting the phosphorylation of STAT3 and AMPK without decreasing ATP and activated ERK1/2 and p38 MAPK signal cascades. Imidazolium oximes induced a time-independent and significant decrease in ATP and inhibition of the ERK1/2 signalling pathway along with phosphorylation of p38 MAPK, AMPK, and ACC. These pathways are usually triggered by a change in cellular energy status or by external signals, which suggests that oximes interact with some membrane receptors. Interestingly, in silico analysis also indicated that the highest probability of interaction for all of our oximes is with the family of G-coupled membrane receptors (GPCR). Furthermore, our experimental results showed that the tested oximes acted as acetylcholine antagonists for membrane AChRs. Even though oxime interactions with membrane receptors need further research and clarification, our findings suggest that these oximes make promising candidates for the development of specific therapies not only in the field of cholinesterase research but in other fields too, such as anticancer therapy via altering the Ca(2+) flux involved in cancer progression.
The fluorinated bis-pyridinium oximes were designed and synthesized with the aim of increasing their nucleophilicity and potential to reactivate phosphorylated human recombinant acetylcholinesterase (AChE) and human purified plasmatic butyrylcholinesterase (BChE) in relation to chlorinated and non-halogenated oxime analogues. Compared to non-halogenated oximes, halogenated oximes showed lower pK(a) of the oxime group (fluorinated < chlorinated < non-halogenated) along with higher level of oximate anion formation at the physiological pH, and had a higher binding affinity of both AChE and BChE. The stability tests showed that the fluorinated oximes were stable in water, while in buffered environment di-fluorinated oximes were prone to rapid degradation, which was reflected in their lower reactivation ability. Mono-fluorinated oximes showed comparable reactivation to non-halogenated (except asoxime) and mono-chlorinated oximes in case of AChE inhibited by sarin, cyclosarin, VX, and tabun, but were less efficient than di-chlorinated ones. The same trend was observed in the reactivation of inhibited BChE. The advantage of halogen substituents in the stabilization of oxime in a position optimal for in-line nucleophilic attack were confirmed by extensive molecular modelling of pre-reactivation complexes between the analogue oximes and phosphorylated AChE and BChE. Halogen substitution was shown to provide oximes with additional beneficial properties, e.g., fluorinated oximes gained antioxidative capacity, and moreover, halogens themselves did not increase cytotoxicity of oximes. Finally, the in vivo administration of highly efficient reactivator and the most promising analogue, 3,5-di-chloro-bispyridinium oxime with trimethylene linker, provided significant protection of mice exposed to sarin and cyclosarin.
        
Title: Cholinergic blockade of neuroinflammation: from tissue to RNA regulators Zorbaz T, Madrer N, Soreq H Ref: Neuronal Signal, 6:NS20210035, 2022 : PubMed
Inflammatory stimuli and consequent pro-inflammatory immune responses may facilitate neurodegeneration and threaten survival following pathogen infection or trauma, but potential controllers preventing these risks are incompletely understood. Here, we argue that small RNA regulators of acetylcholine (ACh) signaling, including microRNAs (miRs) and transfer RNA fragments (tRFs) may tilt the balance between innate and adaptive immunity, avoid chronic inflammation and prevent the neuroinflammation-mediated exacerbation of many neurological diseases. While the restrictive permeability of the blood-brain barrier (BBB) protects the brain from peripheral immune events, this barrier can be disrupted by inflammation and is weakened with age. The consequently dysregulated balance between pro- and anti-inflammatory processes may modify the immune activities of brain microglia, astrocytes, perivascular macrophages, oligodendrocytes and dendritic cells, leading to neuronal damage. Notably, the vagus nerve mediates the peripheral cholinergic anti-inflammatory reflex and underlines the consistent control of body-brain inflammation by pro-inflammatory cytokines, which affect cholinergic functions; therefore, the disruption of this reflex can exacerbate cognitive impairments such as attention deficits and delirium. RNA regulators can contribute to re-balancing the cholinergic network and avoiding its chronic deterioration, and their activities may differ between men and women and/or wear off with age. This can lead to hypersensitivity of aged patients to inflammation and higher risks of neuroinflammation-driven cholinergic impairments such as delirium and dementia following COVID-19 infection. The age- and sex-driven differences in post-transcriptional RNA regulators of cholinergic elements may hence indicate new personalized therapeutic options for neuroinflammatory diseases.
Nerve agents, the deadliest chemical warfare agents, are potent inhibitors of acetylcholinesterase (AChE) and cause rapid cholinergic crisis with serious symptoms of poisoning. Oxime reactivators of AChE are used in medical practice in treatment of nerve agent poisoning, but the search for novel improved reactivators with central activity is an ongoing pursuit. Among the numerous oximes synthesized, in vitro reactivation is a standard approach in biological evaluation with little attention given to the pharmacokinetic properties of the compounds. This study reports a comprehensive physicochemical, pharmacokinetic, and safety profiling of five 3-hydroxy-2-pyridine aldoximes, which were recently shown to be potent AChE reactivators. The oxime JR595 was singled out as highly metabolically stable in human liver microsomes and non-cytotoxic oxime for SH-SY5Y neuroblastoma and 1321N1 astrocytoma cell lines and its pharmacokinetic profile was determined after intramuscular administration in mice. JR595 was rapidly absorbed into blood after 15 min with simultaneous distribution to the brain at up to about 40% of its blood concentration; however, it was eliminated both from the brain and blood within an hour. In addition, the MDCKII-MDR1 cell line assay showed that oxime JR595 was not a P-glycoprotein efflux pump substrate. Furthermore, preliminary antidotal study against multiple LD50 doses of VX and sarin in mice showed the potential of JR595 to provide desirable therapeutic outcomes with future improvements in its circulation time.
Acetylcholinesterase (AChE), an enzyme that degrades the neurotransmitter acetylcholine, when covalently inhibited by organophosphorus compounds (OPs), such as nerve agents and pesticides, can be reactivated by oximes. However, tabun remains among the most dangerous nerve agents due to the low reactivation efficacy of standard pyridinium aldoxime antidotes. Therefore, finding an optimal reactivator for prophylaxis against tabun toxicity and for post-exposure treatment is a continued challenge. In this study, we analyzed the reactivation potency of 111 novel nucleophilic oximes mostly synthesized using the CuAAC triazole ligation between alkyne and azide building blocks. We identified several oximes with significantly improved in vitro reactivating potential for tabun-inhibited human AChE, and in vivo antidotal efficacies in tabun-exposed mice. Our findings offer a significantly improved platform for further development of antidotes and scavengers directed against tabun and related phosphoramidate exposures, such as the Novichok compounds.
Tabun represents the phosphoramidate class of organophosphates that are covalent inhibitors of acetylcholinesterase (AChE), an essential enzyme in neurotransmission. Currently used therapy in counteracting excessive cholinergic stimulation consists of a muscarinic antagonist (atropine) and an oxime reactivator of inhibited AChE, but the classical oximes are particularly ineffective in counteracting tabun exposure. In a recent publication (Kovarik et al., 2019), we showed that several oximes prepared by the Huisgen 1,3 dipolar cycloaddition and related precursors efficiently reactivate the tabun-AChE conjugate. Herein, we pursue the antidotal question further and examine a series of lead precursor molecules, along with triazole compounds, as reactivators of two AChE mutant enzymes. Such studies should reveal structural subtleties that reside within the architecture of the active center gorge of AChE and uncover intimate mechanisms of reactivation of alkylphosphate conjugates of AChE. The designated mutations appear to minimize steric constraints of the reactivating oximes within the impacted active center gorge. Indeed, after initial screening of the triazole oxime library and its precursors for the reactivation efficacy on Y337A and Y337A/F338A human AChE mutants, we found potentially active oxime-mutant enzyme pairs capable of degrading tabun in cycles of inhibition and reactivation. Surprisingly, the most sensitive ex vivo reactivation of mutant AChEs occurred with the alkylpyridinium aldoximes. Hence, although the use of mutant enzyme bio-scavengers in humans may be limited in practicality, bioscavenging and efficient neutralization of tabun itself or phosphoramidate mixtures of organophosphates might be achieved efficiently in vitro or ex vivo with these mutant AChE combinations.
        
Title: Butyrylcholinesterase inhibited by nerve agents is efficiently reactivated with chlorinated pyridinium oximes Zorbaz T, Malinak D, Kuca K, Musilek K, Kovarik Z Ref: Chemico-Biological Interactions, 307:16, 2019 : PubMed
Bispyridinium oximes with one (K865, K866, K867) or two (K868, K869, K870) ortho-positioned chlorine moiety, analogous to previously known K027, K048 and K203 oximes, and potent reactivators of human acetylcholinesterase (AChE) inhibited by nerve agents, were tested in the reactivation of human butyrylcholinesterase (BChE) inhibited by sarin, cyclosarin, VX, and tabun. A previously highlighted AChE reactivator, dichlorinated bispyridinium oxime with propyl linker (K868), was tested in more detail for reactivation of four nerve agent-BChE conjugates. Its BChE reactivation potency was showed to be promising when compared to the standard oximes used in medical practice, asoxime (HI-6) and pralidoxime (2-PAM), especially in case of sarin and tabun. This finding could be used in the pseudo-catalytic scavenging of the most nerve agents due to its cumulative capacity to reactivate both AChE and BChE.
The antidotal property of oximes is attributed to their ability to reactivate acetylcholinesterase (AChE) inhibited by organophosphorus compounds (OP) such as pesticides and nerve warfare agents. Understanding their interactions within the active site of phosphylated AChE is of great significance for the search for more efficient reactivators, especially in the case of the most resistant OP to reactivation, tabun. Therefore, herein we studied the interactions and reactivation of tabun-inhibited AChE by site-directed mutagenesis and a series of bispyridinium oximes. Our results indicated that the replacement of aromatic residues with aliphatic ones at the acyl pocket and choline binding site mostly interfered with the stabilisation of the oxime's pyridinium ring(s) within the active site gorge needed to obtain the proper orientation of the oxime group toward the phosphorylated active site serine. However, in the case of W286A, the mutation in the peripheral binding site by preventing a pi-pi interaction with one of the oxime's pyridinium rings allowed a more favourable position of the oxime for a nucleophilic attack on the phosphorylated catalytic serine. The mutation resulted in a 2-5 fold increase in the reactivation rates when compared to the AChE wild type. Therefore, it seems that aromatic amino acids at the peripheral binding site presented a limitation in bispyridinium oxime reactivation efficiency of tabun-phosphorylated AChE. Moreover, this is further corroborated by the reactivation by mono-pyridinium oxime 2-PAM, in which mutations at the peripheral site did not influence either the affinity or reactivation of tabun-inhibited AChE.
        
Title: The estimation of oxime efficiency is affected by the experimental design of phosphylated acetylcholinesterase reactivation Macek Hrvat N, Zorbaz T, Sinko G, Kovarik Z Ref: Toxicol Lett, 293:222, 2018 : PubMed
Reactivation of acetylcholinesterase (AChE), an essential enzyme in neurotransmission, is a key point in the treatment of acute poisoning by nerve agents and pesticides, which structurally belong to organophosphorus compounds (OP). Due to the high diversity of substituents on the phosphorous atom, there is a variety of OP-AChE conjugates deriving from AChE inhibition, and therefore not only is there no universal reactivator efficient enough for the most toxic OPs, but for some nerve agents there is still a lack of any reactivator at all. The endeavor of many chemists to find more efficient reactivators resulted in thousands of newly-designed and synthesized oximes-potential reactivators of AChE. For an evaluation of the oximes reactivation efficiency, many research groups employ a simple spectrophotometric Ellman method. Since parameters that describe reactivator efficiency are often incomparable among laboratories, we tried to emphasize the critical steps in the determination of reactivation parameters as well as in the experimental design of a reactivation assay. We highlighted the important points in evaluation of reactivation kinetic parameters with an aim to achieve better agreement and comparability between the results obtained by different laboratories and overall, a more efficient evaluation of in vitro reactivation potency.
A new series of 3-hydroxy-2-pyridine aldoxime compounds have been designed, synthesised and tested in vitro, in silico, and ex vivo as reactivators of human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) inhibited by organophosphates (OPs), for example, VX, sarin, cyclosarin, tabun, and paraoxon. The reactivation rates of three oximes (16-18) were determined to be greater than that of 2-PAM and comparable to that of HI-6, two pyridinium aldoximes currently used by the armies of several countries. The interactions important for a productive orientation of the oxime group within the OP-inhibited enzyme have been clarified by molecular-modelling studies, and by the resolution of the crystal structure of the complex of oxime 17 with Torpedo californica AChE. Blood-brain barrier penetration was predicted for oximes 15-18 based on their physicochemical properties and an in vitro brain membrane permeation assay. Among the evaluated compounds, two morpholine-3-hydroxypyridine aldoxime conjugates proved to be promising reactivators of OP-inhibited cholinesterases. Moreover, efficient ex vivo reactivation of phosphylated native cholinesterases by selected oximes enabled significant hydrolysis of VX, sarin, paraoxon, and cyclosarin in whole human blood, which indicates that the oximes have scavenging potential.
Six chlorinated bispyridinium mono-oximes, analogous to potent charged reactivators K027, K048, and K203, were synthesized with the aim of improving lipophilicity and reducing the p Ka value of the oxime group, thus resulting in a higher oximate concentration at pH 7.4 compared to nonchlorinated analogues. The nucleophilicity was examined and the p Ka was found to be lower than that of analogous nonchlorinated oximes. All the new compounds efficiently reactivated human AChE inhibited by nerve agents cyclosarin, sarin, and VX. The most potent was the dichlorinated analogue of oxime K027 with significantly improved ability to reactivate the conjugated enzyme due to improved binding affinity and molecular recognition. Its overall reactivation of sarin-, VX-, and cyclosarin-inhibited AChE was, respectively, 3-, 7-, and 8-fold higher than by K027. Its universality, PAMPA permeability, favorable acid dissociation constant coupled with its negligible cytotoxic effect, and successful ex vivo scavenging of nerve agents in whole human blood warrant further analysis of this compound as an antidote for organophosphorus poisoning.
        
Title: New Cinchona Oximes Evaluated as Reactivators of Acetylcholinesterase and Butyrylcholinesterase Inhibited by Organophosphorus Compounds Katalinic M, Zandona A, Ramic A, Zorbaz T, Primozic I, Kovarik Z Ref: Molecules, 22:, 2017 : PubMed
For the last six decades, researchers have been focused on finding efficient reactivators of organophosphorus compound (OP)-inhibited acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). In this study, we have focused our research on a new oxime scaffold based on the Cinchona structure since it was proven to fit the cholinesterases active site and reversibly inhibit their activity. Three Cinchona oximes (C1, C2, and C3), derivatives of the 9-oxocinchonidine, were synthesized and investigated in reactivation of various OP-inhibited AChE and BChE. As the results showed, the tested oximes were more efficient in the reactivation of BChE and they reactivated enzyme activity to up to 70% with reactivation rates similar to known pyridinium oximes used as antidotes in medical practice today. Furthermore, the oximes showed selectivity towards binding to the BChE active site and the determined enzyme-oxime dissociation constants supported work on the future development of inhibitors in other targeted studies (e.g., in treatment of neurodegenerative disease). Also, we monitored the cytotoxic effect of Cinchona oximes on two cell lines Hep G2 and SH-SY5Y to determine the possible limits for in vivo application. The cytotoxicity results support future studies of these compounds as long as their biological activity is targeted in the lower micromolar range.