Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) is a neurodegenerative disease marked by early-onset cataract and hearing loss, retinitis pigmentosa, and involvement of both the central and peripheral nervous systems, including demyelinating sensorimotor polyneuropathy and cerebellar ataxia. Previously, we mapped this Refsum-like disorder to a 16 Mb region on chromosome 20. Here we report that mutations in the ABHD12 gene cause PHARC disease and we describe the clinical manifestations in a total of 19 patients from four different countries. The ABHD12 enzyme was recently shown to hydrolyze 2-arachidonoyl glycerol (2-AG), the main endocannabinoid lipid transmitter that acts on cannabinoid receptors CB1 and CB2. Our data therefore represent an example of an inherited disorder related to endocannabinoid metabolism. The endocannabinoid system is involved in a wide range of physiological processes including neurotransmission, mood, appetite, pain appreciation, addiction behavior, and inflammation, and several potential drugs targeting these pathways are in development for clinical applications. Our findings show that ABHD12 performs essential functions in both the central and peripheral nervous systems and the eye. Any future drug-mediated interference with this enzyme should consider the potential risk of long-term adverse effects.
        
Title: Dissecting Ent3p: the ENTH domain binds different SNAREs via distinct amino acid residues while the C-terminus is sufficient for retrograde transport from endosomes Zimmermann J, Chidambaram S, Fischer von Mollard G Ref: Biochemical Journal, 431:123, 2010 : PubMed
The ENTH (epsin N-terminal homology) domain protein Ent3p and the ANTH [AP (adaptor protein)-180 N-terminal homology] domain protein Ent5p serve as partially redundant adaptors in vesicle budding from the TGN (trans-Golgi network) in Saccharomyces cerevisiae. They interact with phosphoinositides, clathrin, adaptor proteins and cargo such as chitin synthase Chs3p and SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors). In the present study, we show that ent3Deltaent5Delta cells displayed defects in cell separation and bud site selection. Ent3p and Ent5p were also involved in retrograde transport from early endosomes to the TGN because GFP (green fluorescent protein)-Snc1p shifted from a plasma membrane to an intracellular localization in ent3Deltaent5Delta cells. The C-terminal part of Ent3p was sufficient to restore retrograde transport from early endosomes to the TGN in ent3Deltaent5Delta cells. In contrast, the ENTH domain and the C-terminus were required for transport from the TGN to late endosomes, demonstrating that both functions are distinct. The ENTH domain of Ent3p is known to bind the N-terminal domains of the SNAREs Vti1p, Pep12p and Syn8p, which are required for fusion with late endosomes. The interaction surface between the Ent3p-related mammalian epsinR and vti1b is known. In the present paper, we show that Vti1p bound to the homologous surface patch of Ent3p. Pep12p and Syn8p interacted with the same surface area of Ent3p. However, different amino acid residues in Ent3p were crucial for the interaction with these SNAREs in two-hybrid assays. This provides the necessary flexibility to bind three SNAREs with little sequence homology but maintains the specificity of the interaction.
        
Title: TVP23 interacts genetically with the yeast SNARE VTI1 and functions in retrograde transport from the early endosome to the late Golgi Stein IS, Gottfried A, Zimmermann J, Fischer von Mollard G Ref: Biochemical Journal, 419:229, 2009 : PubMed
SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins contribute to specific recognition between transport vesicles and target membranes and are required for fusion of membranes. The SNARE Vti1p is required for several transport steps between late Golgi, endosomes and the vacuole in the yeast Saccharomyces cerevisiae. Here, we identified the late Golgi membrane protein TVP23 as a multicopy suppressor of the growth defect in vti1-2 cells. By contrast, the growth defect in vti1-11 cells was not suppressed by TVP23 overexpression. Deletion of TVP23 aggravated the growth defect in vti1-2 cells. Genetic interactions between TVP23 and vti1-2 were not found in transport from the late Golgi via the late endosome to the vacuole or in transport from the Golgi directly to the vacuole. These results suggest that Tvp23p is not involved in forward transport from the late Golgi. Therefore retrograde traffic to the late Golgi was analysed. vti1-2 cells accumulated GFP (green fluorescent protein)-Snc1p within the cell, indicating that retrograde transport from the early endosome to the late Golgi was defective in these cells. Deletion of TVP23 in vti1-2 cells resulted in a synthetic defect in GFP-Snc1p recycling, whereas tvp23Delta cells had a slight defect. These results indicate that Tvp23p performs a partially redundant function in retrograde transport from the early endosome to the late Golgi. This transport step was unaffected in vti1-11 cells, providing an explanation for the allele-specific multicopy suppression by TVP23.
The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome XI has been determined. In addition to a compact arrangement of potential protein coding sequences, the 666,448-base-pair sequence has revealed general chromosome patterns; in particular, alternating regional variations in average base composition correlate with variations in local gene density along the chromosome. Significant discrepancies with the previously published genetic map demonstrate the need for using independent physical mapping criteria.