Neuroligins (NLs) are critical for synapse formation and function. NL3 R451C is an autism-associated mutation. NL3 R451C knockin (KI) mice exhibit autistic behavioral abnormalities, including social novelty deficits. However, neither the brain regions involved in social novelty nor the underlying mechanisms are clearly understood. Here, we found decreased excitability of fast-spiking interneurons and dysfunction of gamma oscillation in the medial prefrontal cortex (mPFC), which contributed to the social novelty deficit in the KI mice. Neuronal firing rates and phase-coding abnormalities were also detected in the KI mice during social interactions. Interestingly, optogenetic stimulation of parvalbumin interneurons in the mPFC at 40 Hz nested at 8 Hz positively modulated the social behaviors of mice and rescued the social novelty deficit in the KI mice. Our findings suggest that gamma oscillation dysfunction in the mPFC leads to social deficits in autism, and manipulating mPFC PV interneurons may reverse the deficits in adulthood.
        
Title: Establishment of a BALB/c Mouse Model for Assessing the Degree of Inebriation Induced by Luzhou-Flavor Liquors Zhang MY Ref: Journal of AOAC International, 100:1582, 2017 : PubMed
This investigation was carried out to determine the differences in the degree of inebriation induced by Luzhou-flavor liquors having the same ethanol content. A BALB/c mouse model was used to test the effects of two liquors on the loss of the righting reflex (LORR) and the duration (DUR) of the LORR, as indices of the degree of inebriation. The blood ethanol concentration, blood acetaldehyde concentration, acetylcholinesterase activity in the hippocampus, and concentrations of dopamine and serotonin in the striatum were also determined. The degrees of inebriation induced by the two liquors were 0.694 and 0.404, as quantified by LORR and LORR DUR. The liquor that induced the lower degree of inebriation also induced lower blood ethanol and blood acetaldehyde concentrations. Moreover, it had no significant effects on acetylcholinesterase activity in the hippocampus or on the concentrations of dopamine or serotonin in the striatum. Chinese liquors with the same ethanol content can be distinguished by the degree of inebriation they induce. A relationship was found between the internal composition of the liquor and the degree of inebriation it induced. Our data support choosing liquors with low degrees of inebriation to reduce their harmful effects.
Endocannabinoids are lipid molecules that serve as natural ligands for the cannabinoid receptors CB1 and CB2. They modulate a diverse set of physiological processes such as pain, cognition, appetite, and emotional states, and their levels and functions are tightly regulated by enzymatic biosynthesis and degradation. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid in the brain and is believed to be hydrolyzed primarily by the serine hydrolase monoacylglycerol lipase (MAGL). Although 2-AG binds and activates cannabinoid receptors in vitro, when administered in vivo, it induces only transient cannabimimetic effects as a result of its rapid catabolism. Here we show using a mouse model with a targeted disruption of the MAGL gene that MAGL is the major modulator of 2-AG hydrolysis in vivo. Mice lacking MAGL exhibit dramatically reduced 2-AG hydrolase activity and highly elevated 2-AG levels in the nervous system. A lack of MAGL activity and subsequent long-term elevation of 2-AG levels lead to desensitization of brain CB1 receptors with a significant reduction of cannabimimetic effects of CB1 agonists. Also consistent with CB1 desensitization, MAGL-deficient mice do not show alterations in neuropathic and inflammatory pain sensitivity. These findings provide the first genetic in vivo evidence that MAGL is the major regulator of 2-AG levels and signaling and reveal a pivotal role for 2-AG in modulating CB1 receptor sensitization and endocannabinoid tone.
Endocannabinoids (eCBs) function as retrograde signaling molecules at synapses throughout the brain, regulate axonal growth and guidance during development, and drive adult neurogenesis. There remains a lack of genetic evidence as to the identity of the enzyme(s) responsible for the synthesis of eCBs in the brain. Diacylglycerol lipase-alpha (DAGLalpha) and -beta (DAGLbeta) synthesize 2-arachidonoyl-glycerol (2-AG), the most abundant eCB in the brain. However, their respective contribution to this and to eCB signaling has not been tested. In the present study, we show approximately 80% reductions in 2-AG levels in the brain and spinal cord in DAGLalpha(-/-) mice and a 50% reduction in the brain in DAGLbeta(-/-) mice. In contrast, DAGLbeta plays a more important role than DAGLalpha in regulating 2-AG levels in the liver, with a 90% reduction seen in DAGLbeta(-/-) mice. Levels of arachidonic acid decrease in parallel with 2-AG, suggesting that DAGL activity controls the steady-state levels of both lipids. In the hippocampus, the postsynaptic release of an eCB results in the transient suppression of GABA-mediated transmission at inhibitory synapses; we now show that this form of synaptic plasticity is completely lost in DAGLalpha(-/-) animals and relatively unaffected in DAGLbeta(-/-) animals. Finally, we show that the control of adult neurogenesis in the hippocampus and subventricular zone is compromised in the DAGLalpha(-/-) and/or DAGLbeta(-/-) mice. These findings provide the first evidence that DAGLalpha is the major biosynthetic enzyme for 2-AG in the nervous system and reveal an essential role for this enzyme in regulating retrograde synaptic plasticity and adult neurogenesis.
        
Title: Molecular characterization and inhibition analysis of the acetylcholinesterase gene from the silkworm maggot, Exorista sorbillans Lang GJ, Zhang MY, Li BL, Yu LL, Lu XM, Zhang CX Ref: BMB Rep, 43:573, 2010 : PubMed
Several organophosphorus (OP) insecticides can selectively kill the silkworm maggot, Exorista sorbillans (Es) (Diptera: Tachinidae), while not obviously affecting the host (Bombyx mori) larvae, but the mechanism is not yet clear. In this study, the cDNA encoding an acetylcholinesterase (AChE) from the field Es was isolated. One point mutation (Gly353Ala) was identified. The Es-353G AChE and Es-353A AChE were expressed in baculovirus- insect cell system, respectively. The inhibition results showed that for eserine and Chlorpyrifos, Es-353A AChE was significantly less sensitive than Es-353G AChE. Meanwhile, comparison of the I(50) values of eserine, dichlorvos, Chlorpyrifos and omethoate of recombinant Es AChEs with its host (Bombyx mori) AChEs indicated that, both Es AChEs are more sensitive than B. mori AChEs. The results give an insight of the mechanism that some OP insecticides can selectively kills Es while without distinct effect on its host, B. mori.
        
Title: Development of a liquid chromatography/tandem mass spectrometry method for the quantitation of acetylcholine and related neurotransmitters in brain microdialysis samples Zhang MY, Hughes ZA, Kerns EH, Lin Q, Beyer CE Ref: J Pharm Biomed Anal, 44:586, 2007 : PubMed
Monitoring concentrations of acetylcholine (ACh) in specific brain regions is important in understanding disease pathology, as well as in designing and evaluating novel disease-modifying treatments where cholinergic dysfunction is a hallmark feature. We have developed a sensitive and quantitative liquid chromatography/tandem mass spectrometry method to analyze the extracellular concentrations of ACh, choline (Ch) and (3-carboxylpropyl)-trimethylammonium (iso-ACh) in brain microdialysis samples of freely moving animals. One immediate advantage of this new method is the ability to monitor ACh in its free form without having to use a cholinesterase inhibitor in the perfusate. The separation of ACh, Ch, iso-ACh and related endogenous compounds was carried out based on cation exchange chromatography with a volatile elution buffer consisting of ammonium formate, ammonium acetate and acetonitrile. An unknown interference of ACh, which was observed in brain microdialysates from many studies, was well separated from ACh to ensure the accuracy of the measurement. Optimization of electrospray ionization conditions for these quaternary ammonium compounds achieved the limits of detection (S/N=3) of 0.2 fmol for ACh, 2 fmol for Ch and 0.6 fmol for iso-ACh using a benchtop tandem quadrupole mass spectrometer with moderate sensitivity. The limit of quantitation (S/N=10) was 1 fmol for ACh, 3 fmol for iso-ACh and 10 fmol for Ch. This method was selective, precise (<10% R.S.D.), and sensitive over a range of 0.05-10nM for ACh, 0.25-50 nM for iso-ACh and 15-3000 nM for Ch. To demonstrate that the developed method can be applied to monitoring changes in ACh concentrations in vivo, reference agents that have previously been shown to influence ACh levels were studied in rat dorsal hippocampus. This includes the 5-HT6 receptor antagonist, SB-271046, and the cholinesterase inhibitor, donepezil. Moreover, levels of ACh were demonstrated to be sensitive to infusion of tetrodotoxin (TTX) suggesting that the ACh being measured in vivo was of neuronal origin. Collectively, these biological data provided in vivo validation of this analytical method.