Title: Characterisation of human dipeptidyl peptidase IV expressed in Pichia pastoris. A structural and mechanistic comparison between the recombinant human and the purified porcine enzyme Bar J, Weber A, Hoffmann T, Stork J, Wermann M, Wagner L, Aust S, Gerhartz B, Demuth HU Ref: Biol Chem, 384:1553, 2003 : PubMed
Dipeptidyl peptidase IV/CD26 (DP IV) is a multifunctional serine protease cleaving off dipeptides from the N-terminus of peptides. The enzyme is expressed on the surface of epithelial and endothelial cells as a type II transmembrane protein. However, a soluble form of DP IV is also present in body fluids. Large scale expression of soluble human recombinant His(6)-37-766 DP IV, using the methylotrophic yeast Pichia pastoris, yielded 1.7 mg DP IV protein per litre of fermentation supernatant. The characterisation of recombinant DP IV confirmed proper folding and glycosylation similar to DP IV purified from porcine kidney. Kinetic comparison of both proteins using short synthetic substrates and inhibitors revealed similar characteristics. However, interaction analysis of both proteins with the gastrointestinal hormone GLP-1(7-36) resulted in significantly different binding constants for the human and the porcine enzyme (Kd = 153.0 +/- 17.0 microM and Kd = 33.4 +/- 2.2 microM, respectively). In contrast, the enzyme adenosine deaminase binds stronger to human than to porcine DP IV (Kd = 2.15 +/- 0.18 nM and Kd = 7.38 +/- 0.54 nM, respectively). Even though the sequence of porcine DP IV, amplified by RT-PCR, revealed 88% identity between both enzymes, the species-specific variations between amino acids 328 to 341 are likely to be responsible for the differences in ADA-binding.
The membrane-bound glycoprotein dipeptidyl peptidase IV (DP IV, CD26) is a unique multifunctional protein, acting as receptor, binding and proteolytic molecule. We have determined the sequence and 1.8 A crystal structure of native DP IV prepared from porcine kidney. The crystal structure reveals a 2-2-2 symmetric tetrameric assembly which depends on the natively glycosylated beta-propeller blade IV. The crystal structure indicates that tetramerization of DP IV is a key mechanism to regulate its interaction with other components. Each subunit comprises two structural domains, the N-terminal eight-bladed beta-propeller with open Velcro topology and the C-terminal alpha/beta-hydrolase domain. Analogy with the structurally related POP and tricorn protease suggests that substrates access the buried active site through the beta-propeller tunnel while products leave the active site through a separate side exit. A dipeptide mimicking inhibitor complexed to the active site discloses key determinants for substrate recognition, including a Glu-Glu motif that distinguishes DP IV as an aminopeptidase and an oxyanion trap that binds and activates the P(2)-carbonyl oxygen necessary for efficient postproline cleavage. We discuss active and nonactive site-directed inhibition strategies of this pharmaceutical target protein.