HaloTag is a small self-labeling protein that is frequently used for creating fluorescent reporters in living cells. The small-molecule dyes used with HaloTag are almost exclusively based on rhodamine scaffolds, which are often expensive and challenging to synthesize. Herein, we report the engineering of HaloTag for use with a chemically accessible, inexpensive fluorophore based on the dimethylamino-styrylpyridium dye. Through directed evolution, the maximum fluorogenicity and the apparent second-order bioconjugation rate constants could be improved up to 4-fold and 42-fold, respectively. One of the top variants, HT-SP5, enabled reliable imaging in mammalian cells, with a 113-fold fluorescence enhancement over the parent protein. Additionally, crystallographic characterization of selected mutants suggests the chemical origin of the fluorescent enhancement. The improved dye system offers a valuable tool for imaging and illustrates the viability of engineering self-labeling proteins for alternative fluorophores.
The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.
Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.
        
Title: Repeated inhibition of cholinesterase by chlorpyrifos in rats: behavioral, neurochemical and pharmacological indices of tolerance Bushnell PJ, Kelly KL, Ward TR Ref: Journal of Pharmacology & Experimental Therapeutics, 270:15, 1994 : PubMed
Previous work from this laboratory showed that daily s.c. injections of the organophosphate diisopropylfluorophosphate caused prolonged inhibition of cholinesterase (ChE) activity in whole blood and brain and downregulation of muscarinic receptors in the central nervous system; these changes were accompanied by progressive, persistent deterioration of working memory and motor function. Further, a single s.c. injection of the organophosphate insecticide chlorpyrifos (O,O',-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothionate, CPF), caused neurochemical changes of the same magnitude and duration, but transient impairment of working memory and motor slowing. In the present study, weekly injections of CPF (0, 15, 30 or 60 mg/kg s.c.) inhibited ChE activity in whole blood of rats by 60% to 90% after 5 weeks; the highest dose also induced tremor, working memory impairment and motor slowing in daily delayed matching-to-position/visual discrimination tests. Reducing the CPF injection frequency to every other week relieved the inhibition of whole blood ChE activity (to 50%-75% of control) and ameliorated all the behavioral deficits. Reinstatement of weekly CPF injections (0, 15, 30, or 45 mg/kg) for 10 weeks inhibited whole blood ChE activity by 75% to 90%. Tremor was not observed during this period; however, motor slowing and working memory impairment persisted throughout the dosing period in all treated groups. Pharmacological evidence for tolerance to the muscarinic effects of CPF was observed on trial completion in the daily delayed matching-to-position/visual discrimination task: CPF-treated rats were supersensitive to scopolamine and subsensitive to pilocarpine. Nicotine reversed the reduction in trial completion associated with CPF. Changes in sensitivity to mecamylamine, d-amphetamine and haloperidol were not observed. Taken together, these studies indicate that inhibition of ChE activity by repeated injection of CPF produces a constellation of behavioral effects not evident after a single CPF treatment, even though both treatment regimens caused prolonged inhibition of ChE activity and downregulation of central muscarinic receptors.
        
Title: Correlation of the anticholinesterase activity of a series of organophosphates with their ability to compete with agonist binding to muscarinic receptors Ward TR, Ferris DJ, Tilson HA, Mundy WR Ref: Toxicology & Applied Pharmacology, 122:300, 1993 : PubMed
Some compounds that inhibit acetylcholinesterase (AChE) activity compete directly with quinuclidinyl benzilate (QNB) binding, a muscarinic antagonist which binds to all subtypes equally, and with cis-methyldioxolane (CD), an agonist that binds with high affinity to the M2 subtype of muscarinic receptors. The relationship between inhibition of AChE activity and the capability to affect muscarinic receptors directly has not been systematically explored. The interaction of eight organophosphates with muscarinic receptors was compared to their ability to inhibit AChE activity in vitro in tissue homogenates from rat hippocampus and frontal cortex, two cholinergically enriched areas of the brain. Of the compounds tested only echothiophate competed for [3H]QNB binding and only at concentrations greater than 100 microM. The anticholinesterase compounds were also tested for their ability to compete with a muscarinic receptor agonist, [3H]CD, which binds with high affinity (approximate KD = 3.5 nM) to 10 and 3% of the muscarinic receptors in the frontal cortex and hippocampus, respectively. The anticholinesterase compounds inhibited high-affinity [3H]CD binding up to 80% and the effects were similar in both tissues. Echothiophate and DFP were potent inhibitors of [3H]CD binding, as were the active "oxon" forms of parathion, malathion, and disulfoton. The parent "thio" forms of these insecticides, however, were much less effective in competing for [3H]CD binding. A similar pattern of potency was observed for the inhibition of brain AChE activity. A strong correlation was found between the ability of a compound to inhibit AChE activity and the ability to compete with [3H]CD binding. These data suggest that the biological effects of cholinesterase-inhibiting compounds may be due to more than their ability to inhibit AChE.