Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
Darapladib, a lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibitor, failed to demonstrate efficacy for the primary endpoints in two large phase III cardiovascular outcomes trials, one in stable coronary heart disease patients (STABILITY) and one in acute coronary syndrome (SOLID-TIMI 52). No major safety signals were observed but tolerability issues of diarrhea and odor were common (up to 13%). We hypothesized that genetic variants associated with Lp-PLA2 activity may influence efficacy and tolerability and therefore performed a comprehensive pharmacogenetic analysis of both trials. We genotyped patients within the STABILITY and SOLID-TIMI 52 trials who provided a DNA sample and consent (n = 13,577 and 10,404 respectively, representing 86% and 82% of the trial participants) using genome-wide arrays with exome content and performed imputation using a 1000 Genomes reference panel. We investigated baseline and change from baseline in Lp-PLA2 activity, two efficacy endpoints (major coronary events and myocardial infarction) as well as tolerability parameters at genome-wide and candidate gene level using a meta-analytic approach. We replicated associations of published loci on baseline Lp-PLA2 activity (APOE, CELSR2, LPA, PLA2G7, LDLR and SCARB1) and identified three novel loci (TOMM5, FRMD5 and LPL) using the GWAS-significance threshold P<=5E-08. Review of the PLA2G7 gene (encoding Lp-PLA2) within these datasets identified V279F null allele carriers as well as three other rare exonic null alleles within various ethnic groups, however none of these variants nor any other loci associated with Lp-PLA2 activity at baseline were associated with any of the drug response endpoints. The analysis of darapladib efficacy endpoints, despite low power, identified six low frequency loci with main genotype effect (though with borderline imputation scores) and one common locus (minor allele frequency 0.24) with genotype by treatment interaction effect passing the GWAS-significance threshold. This locus conferred risk in placebo subjects, hazard ratio (HR) 1.22 with 95% confidence interval (CI) 1.11-1.33, but was protective in darapladib subjects, HR 0.79 (95% CI 0.71-0.88). No major loci for tolerability were found. Thus, genetic analysis confirmed and extended the influence of lipoprotein loci on Lp-PLA2 levels, identified some novel null alleles in the PLA2G7 gene, and only identified one potentially efficacious subgroup within these two large clinical trials.
BACKGROUND: We evaluated lipoprotein-associated phospholipase A2 (Lp-PLA2) activity in patients with stable coronary heart disease before and during treatment with darapladib, a selective Lp-PLA2 inhibitor, in relation to outcomes and the effects of darapladib in the STABILITY trial. METHODS AND RESULTS: Plasma Lp-PLA2 activity was determined at baseline (n=14 500); at 1 month (n=13 709); serially (n=100) at 3, 6, and 18 months; and at the end of treatment. Adjusted Cox regression models evaluated associations between Lp-PLA2 activity levels and outcomes. At baseline, the median Lp-PLA2 level was 172.4 micromol/min per liter (interquartile range 143.1-204.2 micromol/min per liter). Comparing the highest and lowest Lp-PLA2 quartile groups, the hazard ratios were 1.50 (95% CI 1.23-1.82) for the primary composite end point (cardiovascular death, myocardial infarction, or stroke), 1.95 (95% CI 1.29-2.93) for hospitalization for heart failure, 1.42 (1.07-1.89) for cardiovascular death, and 1.37 (1.03-1.81) for myocardial infarction after adjustment for baseline characteristics, standard laboratory variables, and other prognostic biomarkers. Treatment with darapladib led to a =65% persistent reduction in median Lp-PLA2 activity. There were no associations between on-treatment Lp-PLA2 activity or changes of Lp-PLA2 activity and outcomes, and there were no significant interactions between baseline and on-treatment Lp-PLA2 activity or changes in Lp-PLA2 activity levels and the effects of darapladib on outcomes. CONCLUSIONS: Although high Lp-PLA2 activity was associated with increased risk of cardiovascular events, pharmacological lowering of Lp-PLA2 activity by =65% did not significantly reduce cardiovascular events in patients with stable coronary heart disease, regardless of the baseline level or the magnitude of change of Lp-PLA2 activity. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT00799903.
BACKGROUND: Fixed-dose unmonitored treatment with dabigatran etexilate is effective and has a favorable safety profile in the prevention of stroke in atrial fibrillation patients compared with warfarin. We hypothesized that genetic variants could contribute to interindividual variability in blood concentrations of the active metabolite of dabigatran etexilate and influence the safety and efficacy of dabigatran. METHODS AND RESULTS: We successfully conducted a genome-wide association study in 2944 Randomized Evaluation of Long-term Anticoagulation Therapy (RE-LY) participants. The CES1 single-nucleotide polymorphism rs2244613 was associated with trough concentrations, and the ABCB1 single-nucleotide polymorphism rs4148738 and the CES1 single-nucleotide polymorphism rs8192935 were associated with peak concentrations at genome-wide significance (P<9x10(-8)) with a gene-dose effect. Each minor allele of the CES1 single-nucleotide polymorphism rs2244613 was associated with lower trough concentrations (15% decrease per allele; 95% confidence interval, 10-19; P=1.2x10(-8)) and a lower risk of any bleeding (odds ratio, 0.67; 95% confidence interval, 0.55-0.82; P=7x10(-5)) in dabigatran-treated participants, with a consistent but nonsignificant lower risk of major bleeding (odds ratio, 0.66; 95% confidence interval, 0.43-1.01). The interaction between treatment (warfarin versus all dabigatran) and carrier status was statistically significant (P=0.002), with carriers having less bleeding with dabigatran than warfarin (hazard ratio, 0.59; 95% confidence interval, 0.46-0.76; P=5.2x10(-)5) in contrast to no difference in noncarriers (hazard ratio, 0.96; 95% confidence interval, 0.81-1.14; P=0.65). There was no association with ischemic events, and neither rs4148738 nor rs8192935 was associated with bleeding or ischemic events. CONCLUSIONS: Genome-wide association analysis identified that carriage of the CES1 rs2244613 minor allele occurred in 32.8% of patients in RE-LY and was associated with lower exposure to active dabigatran metabolite. The presence of the polymorphism was associated with a lower risk of bleeding. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00262600.