Centrally acting cholinergic agents are currently reported to increase blood pressure in various species through the stimulation of muscarinic cholinoceptors. Moreover, several cardiovascular adverse effects have been reported from clinical studies. The aim of this study was to investigate the effects of tacrine, an acetylcholinesterase inhibitor which has been reported to have therapeutic potential in Alzheimer's disease, on blood pressure and two vasopressor systems (sympathetic and vasopressinergic) in Beagle dogs. Intravenous (i.v.) tacrine (2 mg kg(-1)) induced, in conscious and anesthetized dogs, an increase in systolic and diastolic blood pressure, accompanied by bradycardia. This increase was dose-dependent with a peak effect at 1.5 min following administration. Tacrine also induced an increase in noradrenaline, adrenaline and vasopressin plasma levels. Pretreatment with the muscarinic receptor antagonist, atropine (2 mg kg(-1), i.v.), abolished the pressor response to i.v. injection of tacrine while pretreatment with the peripheral muscarinic receptor antagonist, methylscopolamine (0.2 mg kg(-1), i.v.), did not alter the increase in blood pressure. Similarly, noradrenaline and adrenaline changes in plasma levels were not modified by methylscopolamine but were abolished by atropine pretreatment. A similar tendency although not significant was observed for vasopressin plasma levels. The present results demonstrate that in dogs, tacrine (2 mg kg(-1), i.v.) stimulates central muscarinic cholinoceptors to increase blood pressure through activation of the two components of the sympathetic nervous system (i.e., neuroneuronal noradrenergic and the neurohormonal adrenergic pathways) as well as through increasing noradrenaline, adrenaline and vasopressin plasma levels.
The cardiovascular effects of three different acetylcholinesterase inhibitors: physostigmine, tacrine and rivastigmine injected by intravenous (i.v.) route were compared in freely moving Wistar rats. The three drugs significantly increased both systolic and diastolic blood pressure and decreased heart rate. Compared to physostigmine, a 20-fold higher dose of tacrine and a 40-fold higher dose of rivastigmine was necessary to induce a comparable pressor effect. Tacrine was chosen as a model to study the mechanisms underlying the cardiovascular effects of i.v. cholinesterase inhibitors. Atropine totally abolished while methylatropine did not affect tacrine pressor effects. Conversely, both drugs abolished tacrine-induced bradycardia. The alpha1-adrenoceptor antagonist prazosin or the vasopressin V1 receptor antagonist, [beta-mercapto-beta,beta-cyclopenta-methylenepropionyl1, O-Me-Tyr2, Arg8] vasopressin partially but significantly reduced tacrine pressor effect and mostly abolished it when administered concomitantly. The tacrine pressor response was inhibited in a dose-dependent manner by the i.c.v. administration of the non-selective muscarinic receptor antagonist atropine (ID50 = 1.45 microg), the muscarinic M1 receptor antagonist pirenzepine (ID50 = 4.33 microg), the muscarinic M2 receptor antagonist methoctramine (ID50 = 1.39 microg) and the muscarinic M3 receptor antagonist para-fluoro-hexahydro-sila-difenidol (ID50 = 31.19 microg). Central injection of such muscarinic receptor antagonists did not affect tacrine-induced bradycardia. Our results show that acetylcholinesterase inhibitors induce significant cardiovascular effects with a pressor response mediated mainly by the stimulation of central muscarinic M2 receptors inducing a secondary increase in sympathetic outflow and vasopressin release. Conversely, acetylcholinesterase inhibitor-induced bradycardia appears to be mediated by peripheral muscarinic mechanisms.