Title: Structure determination and refinement of bovine lens leucine aminopeptidase and its complex with bestatin Burley SK, David PR, Sweet RM, Taylor A, Lipscomb WN Ref: Journal of Molecular Biology, 224:113, 1992 : PubMed
The three-dimensional structure of bovine lens leucine aminopeptidase (EC 3.4.11.1) complexed with bestatin, a slow-binding inhibitor, has been solved to 3.0 A resolution by the multiple isomorphous replacement method with phase combination and density modification. In addition, this structure and the structure of the isomorphous native enzyme have been refined at 2.25 and 2.32 A resolution, respectively, with crystallographic R-factors of 0.180 and 0.159, respectively. The current structural model for the enzyme includes the two zinc ions and 481 of the 487 amino acid residues comprising the asymmetric unit. The enzyme is physiologically active as a hexamer, which has 32 symmetry, and is triangular in shape with a triangle edge length of 115 A and maximal thickness of 90 A. Monomers are crystallographically equivalent. Each is folded into two unequal alpha/beta domains connected by an alpha-helix to give a comma-like shape with approximate maximal dimensions of 90 A x 55 A x 55 A. The secondary structural composition is 35% alpha-helix and 23% beta-strand. The N-terminal domain (160 amino acid residues) mediates trimer-trimer interactions and does not appear to participate directly in catalysis, while the C-terminal domain (327 amino acid residues) is responsible for catalysis and binds the two zinc ions, which are less than 3 A apart. These two metal ions are located near the edge of an eight-stranded, saddle-shaped beta-sheet. The zinc ion that has the lower temperature factor is co-ordinated by one carboxylate oxygen atom from each of Asp255, Asp332 and Glu334, and the carbonyl oxygen of Asp332. The other zinc ion, presumed to be readily exchangeable, is co-ordinated by one carboxylate oxygen atom of each of Asp273 and Glu334 and the side-chain amino group of Lys250. The active site also contains two positively charged residues, Lys262 and Arg336. The six active sites are themselves located in the interior of the hexamer, where they line a disk-shaped cavity of radius 15 A and thickness 10 A. Access to this cavity is provided by solvent channels that run along the 2-fold symmetry axes. Bestatin binds to one of the active site zinc ions, and its phenylalanine and leucine side-chains occupy hydrophobic pockets adjacent to the active site. Finally, the relationship between bovine lens leucine aminopeptidase and the homologous enzyme pepA from Escherichia coli is discussed.
The crystal structure of the homodimeric serine carboxypeptidase II from wheat (CPDW-II, M(r) 120K) has been determined and fully refined at 2.2-A resolution to a standard crystallographic R factor of 16.9% using synchrotron data collected at the Brookhaven National Laboratory. The model has an rms deviation from ideal bond lengths of 0.018 A and from bond angles of 2.8 degrees. The model supports the general conclusions of an earlier study at 3.5-A resolution and will form the basis for investigation into substrate binding and mechanistic studies. The enzyme has an alpha + beta fold, consisting of a central 11-stranded beta-sheet with a total of 15 helices on either side. The enzyme, like other serine proteinases, contains a "catalytic triad" Ser146-His397-Asp338 and a presumed "oxyanion hole" consisting of the backbone amides of Tyr147 and Gly53. The carboxylate of Asp338 and imidazole of His397 are not coplanar in contrast to the other serine proteinases. A comparison of the active site features of the three families of serine proteinases suggests that the "catalytic triad" should actually be regarded as two diads, a His-Asp diad and a His-Ser diad, and that the relative orientation of one diad with respect to the other is not particularly important. Four active site residues (52, 53, 65, and 146) have unfavorable backbone conformations but have well-defined electron density, suggesting that there is some strain in the active site region. The binding of the free amino acid arginine has been analyzed by difference Fourier methods, locating the binding site for the C-terminal carboxylate of the leaving group. The carboxylate makes hydrogen bonds to Glu145, Asn51, and the amide of Gly52. The carboxylate of Glu145 also makes a hydrogen bond with that of Glu65, suggesting that one or both may be protonated. Thus, the loss of peptidase activity at pH > 7 may in part be due to deprotonation of Glu145. The active site does not reveal exposed peptide amides and carbonyl oxygen atoms that could interact with substrate in an extended beta-sheet fashion. The fold of the polypeptide backbone is completely different than that of trypsin or subtilisin, suggesting that this is a third example of convergent molecular evolution to a common enzymatic activity. Furthermore, it is suggested that the active site sequence motif "G-X-S-X-G/A", often considered the hallmark of serine peptidase or esterase activity, is fortuitous and not the result of divergent evolution.