Title: Design, Synthesis, and Proof of Concept of Balanced Dual Inhibitors of Butyrylcholinesterase (BChE) and Histone Deacetylase 6 (HDAC6) for the Treatment of Alzheimer's Disease Wang L, Sun T, Wang Z, Liu H, Qiu W, Tang X, Guo H, Yang P, Chen Y, Sun H Ref: ACS Chem Neurosci, :, 2023 : PubMed
Concomitant inhibition of butyrylcholinesterase (BChE) and histone deacetylase 6 (HDAC6) is supposed to be effective in the treatment of Alzheimer's disease (AD). Inspired by our previous efforts in designing BChE inhibitors, herein, selective BChE and HDAC6 dual inhibitors were successfully identified through the fusion of the core pharmacophoric moiety of BChE and HDAC6 inhibitors. After the structure-activity relationship (SAR) studies, two compounds (24g and 29a) were confirmed to have superior inhibitory activity against BChE (the IC(50) against hBChE are 4.0 and 1.8 nM, respectively) and HDAC6 (the IC(50) against HDAC6 are 8.9 and 71.0 nM, respectively). These two compounds showed prominently neuroprotective effects in vitro, potent reactive oxygen species (ROS) scavenging effects, and effective metal ion (Fe(2+) and Cu(2+)) chelation. In addition, they exhibited pronounced inhibition of phosphorylated tau and a moderate immunomodulatory effect, with a lack of neurotoxicity at the cellular level. In vivo studies showed that both 24g and 29a ameliorated the cognitive impairment in an Abeta(1-42)-induced mouse model at a low dosage (2.5 mg/kg). Our data demonstrated that BChE/HDAC6 dual inhibitors could establish the basis for a potential new symptomatic and disease-modifying strategy to treat AD.
        
Title: Saxagliptin alleviates erectile dysfunction through increasing SDF-1 in diabetes mellitus Sun T, Xu W, Wang J, Wang T, Wang S, Liu K, Liu J Ref: Andrology, :, 2022 : PubMed
BACKGROUND: Diabetes mellitus-induced erectile dysfunction (DMED) is one of the complications of diabetes and has a poor response to phosphodiesterase type 5 inhibitor, the first-line treatment for ED. Saxagliptin (Sax), a dipeptidyl peptidase-4 inhibitor (DPP-4i), has been officially used in the treatment of type 2 diabetes. Stromal cell-derived factor-1 (SDF-1) is one of the important substrates of DPP-4, and has been proven to be beneficial for several DM complications. However, it is unknown whether Sax contributes to the management of DMED. OBJECTIVES: To explore the effect and possible underlying mechanisms of Sax in the treatment of DMED. METHODS: The model of DM was established by intraperitoneal injection of streptozotocin. All rats were divided into 3 groups (n = 8 per group): control group, DMED group and DMED+Sax group. In cellular experiments, the corpus cavernosum smooth muscle cells (CCSMCs) were exposed to high glucose (HG), and treated with Sax and AMD3100 (SDF-1 receptor inhibitor). The penile tissue and CCSMCs were harvested for detection. RESULTS: We found erectile function was impaired in DMED rats compared with the control group, which was partially relieved by Sax. Decreased expression of DPP-4 and increased level of SDF-1 were also observed in DMED+Sax group, together with elevation of PI3K/AKT pathway and inhibition of endothelial dysfunction, oxidative stress and apoptosis in corpus cavernosum. Moreover, Sax could also regulate oxidative stress and apoptosis in CCSMCs under HG condition, which was blocked in part by AMD3100. CONCLUSION: Sax could alleviate DMED through increasing SDF-1 and PI3K/AKT pathway, in company with moderation of endothelial dysfunction, oxidative stress and apoptosis. Our findings indicated that DPP-4is may be beneficial to the management of DMED. This article is protected by copyright. All rights reserved.
        
Title: MicroRNA-544 attenuates diabetic renal injury via suppressing glomerulosclerosis and inflammation by targeting FASN Sun T, Liu Y, Liu L, Ma F Ref: Gene, 723:143986, 2020 : PubMed
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Accumulating evidence shows that microRNAs play important roles in diabetic kidney. However, the potential role of MicroRNA-544 (miR-544) in DN remains unclear. In this study, we explored the role of miR-544 on inflammation and fibrosis in diabetic kidney using db/db mice. Renal expression of miR-544 was decreased in mice, companied by increased the expression of FASN. The dual luciferase assay confirmed FASN as a direct target of miR-544. Over-expression of miR-544 significantly ameliorated renal injury, mesangial matrix and renal fibrosis. In addition, over-expression of miR-544 significantly attenuated inflammatory cells infiltration and IL-1, IL-6, TNF- and iNOS production in DN. Furthermore, miR-544 over-expression inhibited the activation of NF-kB signal pathway in DN. In conclusion, our finding demonstrated that miR-544 attenuates diabetic renal injury via suppressing glomerulosclerosis and inflammation by targeting FASN, suggesting that miR-544 might have therapeutic potential for the treatment of DN.
CONTEXT: Crosstalk through receptor ligand interactions at the maternal-fetal interface is impacted by fetal sex. This affects placentation in the first trimester and differences in outcomes. Sexually dimorphic signaling at early stages of placentation are not defined. OBJECTIVE: Investigate the impact of fetal sex on maternal-fetal crosstalk. DESIGN: Receptors/ligands at the maternal-fetal surface were identified from sexually dimorphic genes between fetal sexes in the first trimester placenta and defined in each cell type using single-cell RNA-Sequencing (scRNA-Seq). SETTING: Academic institution. SAMPLES: Late first trimester (~10-13 weeks) placenta (fetal) and decidua (maternal) from uncomplicated ongoing pregnancies. MAIN OUTCOME MEASURES: Transcriptomic profiling at tissue and single-cell level; immunohistochemistry of select proteins. RESULTS: We identified 91 sexually dimorphic receptor-ligand pairs across the maternal-fetal interface. We examined fetal sex differences in 5 major cell types (trophoblasts, stromal cells, Hofbauer cells, antigen-presenting cells, and endothelial cells). Ligands from the CC family chemokine ligand (CCL) family were most highly representative in females, with their receptors present on the maternal surface. Sexually dimorphic trophoblast transcripts, Mucin-15 (MUC15) and notum, palmitoleoyl-protein carboxylesterase (NOTUM) were also most highly expressed in syncytiotrophoblasts and extra-villous trophoblasts respectively. Gene Ontology (GO) analysis using sexually dimorphic genes in individual cell types identified cytokine mediated signaling pathways to be most representative in female trophoblasts. Upstream analysis demonstrated TGFB1 and estradiol to affect all cell types, but dihydrotestosterone, produced by the male fetus, was an upstream regulator most significant for the trophoblast population. CONCLUSIONS: Maternal-fetal crosstalk exhibits sexual dimorphism during placentation early in gestation.
OBJECTIVE: To investigate the relationship between serum cholinesterase (SChE) level and the prognosis of patients with septic shock (SS). METHODS: A total of 594 patients with SS admitted to the First Affiliated Hospital of Zhengzhou University from June 2013 to June 2017 were enrolled. General data such as gender, age, acute physiology and chronic health evaluation II (APACHE II) score were recorded as well as routine blood test, procalcitonin (PCT), hepatic function, renal function, coagulation function and blood gas analysis parameters within 48 hours of SS diagnosis. The patients were followed by telephone from September to October in 2019, and the outcome was recorded. The primary outcome was all-cause death 28 days after discharge. The secondary outcomes were all-cause death in intensive care unit (ICU) and 2 years after discharge, and the length of ICU stay. The patients were divided into two groups according to prognosis of 28 days: the survival group and the death group. The clinical data of the two groups were compared. Multivariate Cox regression analysis was used to screen prognostic risk factors of 28 days in patients with SS. The receiver operating characteristic (ROC) curve was used to explore predictive value of liver function parameter SChE for 28-day prognosis of patients with SS. The patients were divided into two groups according to the levels of SChE: the low SChE group (SChE = 4 000 U/L) and the normal SChE group (SChE > 4 000 U/L). Kaplan-Meier survival curves were used to compare the cumulative survival rates without endpoint event of patients with different SChE levels. RESULTS: A total of 385 patients with SS were enrolled according to the inclusion and exclusion criteria, and a total of 356 patients were followed up successfully, with a follow-up rate of 92.5% (356/385). There were 142 survival patients and 214 death patients at 28 days, with a 28-day mortality rate of 60.1% (214/356). There were 116 survival patients and 240 death patients at 2 years, with a 2-year mortality rate of 67.4% (240/356). Compared with the 28-day survival group, the patients in the death group were older and had higher APACHE II score, partial hepatic and renal function parameters, higher level of blood lactate (Lac) and lower levels of white blood cell count (WBC), platelet count (PLT) and SChE with statistically significant differences. Multivariate Cox regression analysis showed that the age [relative risk (RR) = 1.444, 95% confidence interval (95%CI) was 1.090-1.914, P = 0.010], APACHE II score (RR = 2.249, 95%CI was 1.688-2.997, P = 0.000), SChE (RR = 1.469, 95%CI was 1.057-2.043, P = 0.022), and Lac (RR = 2.190, 95%CI was 1.636-2.931, P = 0.000) were independent risk factors for 28-day mortality of patients with SS. The ROC curve analysis showed that SChE had a weak prognostic value for 28-day prognosis of patients with SS [the area under ROC curve (AUC) was 0.574]. However, the combined predictive value of SChE, APACHE II score and Lac was greater than APACHE II score or Lac alone for prediction (AUC: 0.807 vs. 0.785, 0.697), with a sensitivity of 79.9% and a specificity of 68.5%. Compared with the normal SChE group (n = 88), the 28-day mortality of patients in the low SChE group (n = 268) was significantly increased [63.1% (169/268) vs. 51.1% (45/88), P < 0.05], but ICU mortality [59.7% (160/268) vs. 48.9% (43/88)], 2-year mortality [69.8% (187/268) vs. 60.2% (53/88)] or the length of ICU stay [days: 4 (2, 7) vs. 5 (2, 9)] between the two groups showed no statistical significance (all P > 0.05). Kaplan-Meier survival curve analysis showed that the cumulative survival rate without endpoint event of patients in the low SChE group was significantly lower than that in the normal SChE group (Log-Rank test: chi(2) = 5.852, P = 0.016). CONCLUSIONS: Increased risk of 28-day mortality in patients with SS whose SChE is below normal. The level of SChE is an independent risk factor for 28-day death in SS patients, and it is one of the indicators to evaluate the short-term prognosis of patients with SS.
Neurodegenerative and neuropsychiatric diseases are characterized by the structural and functional abnormalities of neurons in certain regions of the brain. These abnormalities, which can result in progressive neuronal degeneration and functional disability, are incurable to date. Although comprehensive efforts have been made to figure out effective therapies against these diseases, partial success has been achieved and complete functional recovery is still not a reality. At present, plants and plant-derived compounds are getting more attention because of a plethora of pharmacological properties, and they are proving to be a better and safer target as therapeutic interventions. This review aims to highlight the roles of tannins, 'the polyphenol phytochemicals', in tackling neurodegenerative diseases including Alzheimer's and Parkinson's diseases as well as neuropsychiatric disorders like depression. Among the multifarious pharmacological properties of tannins, anti-oxidative, anti-inflammatory, and anti-cholinesterase activities are emphasized more in terms of neuroprotection. The current review also throws light on mechanistic pathways by which various classes of tannins execute neuroprotective effects. Despite their beneficial properties, some harmful effects of tannins have also been elaborated.
Heart failure remains a major source of late morbidity and mortality after myocardial infarction (MI). The temporospatial presence of activated fibroblasts in the injured myocardium predicts the quality of cardiac remodeling after MI. Therefore, monitoring of activated fibroblasts is of great interest for studying cardiac remodeling after MI. Fibroblast activation protein (FAP) expression is upregulated in activated fibroblasts. This study investigated the feasibility of imaging activated fibroblasts with a new (68)Ga-labeled FAP inhibitor ((68)Ga-FAPI-04) for PET imaging of fibroblast activation in a preclinical model of MI. Methods: MI and sham-operated rats were scanned with (68)Ga-FAPI-04 PET/CT (1, 3, 6, 14, 23, and 30 d after MI) and with (18)F-FDG (3 d after MI). Dynamic (68)Ga-FAPI-04 PET and blocking studies were performed on MI rats 7 d after coronary ligation. After in vivo scans, the animals were euthanized and their hearts harvested for ex vivo analyses. Cryosections were prepared for autoradiography, hematoxylin and eosin (H&E), and immunofluorescence staining. Results:(68)Ga-FAPI-04 uptake in the injured myocardium peaked on day 6 after coronary ligation. The tracer accumulated intensely in the MI territory, as identified by decreased (18)F-FDG uptake and confirmed by PET/MR and H&E staining. Autoradiography and H&E staining of cross-sections revealed that (68)Ga-FAPI-04 accumulated mainly at the border zone of the infarcted myocardium. In contrast, there was only minimal uptake in the infarct of the blocked rats, comparable to the uptake in the remote noninfarcted myocardium (PET image-derived ratio of infarct uptake to remote uptake: 6 +/- 2). Immunofluorescence staining confirmed the presence of FAP-positive myofibroblasts in the injured myocardium. Morphometric analysis of the whole-heart sections demonstrated 3- and 8-fold higher FAP-positive fibroblast density in the border zone than in the infarct center and remote area, respectively. Conclusion:(68)Ga-FAPI-04 represents a promising radiotracer for in vivo imaging of post-MI fibroblast activation. Noninvasive imaging of activated fibroblasts may have significant diagnostic and prognostic value, which could aid clinical management of patients after MI.
        
Title: A sensitive amperometric AChE-biosensor for organophosphate pesticides detection based on conjugated polymer and Ag-rGO-NH2 nanocomposite Zhang P, Sun T, Rong S, Zeng D, Yu H, Zhang Z, Chang D, Pan H Ref: Bioelectrochemistry, 127:163, 2019 : PubMed
Long-term accumulation of organophosphate pesticides in environment presents a potential hazard to human and animal health. Towards this, a highly sensitive amperometric AChE-biosensor based on conjugated polymer and Ag-rGO-NH2 nanocomposite has been successfully developed. First, 4, 7-di (furan-2-yl) benzo thiadiazole (FBThF) was electrochemically polymerized on the electrode surface. Then, Ag-rGO-NH2 nanocomposite and acetylcholinesterase (AChE) are modified on the polymer membrane surface. In this way, a novel amperometric AChE-biosensor was successfully prepared. The as-prepared biosensor possessed excellent conductivity, catalytic activity, and biocompatibility which were attributed to the synergistic effects of poly(FBThF) and Ag-rGO-NH2 and provided a hydrophilic surface for AChE adhesion. Under optimized conductions, the linear range was 0.099-9.9mugL(-1) with a regression coefficient of 0.9947 for malathion, 0.0206-2.06mugL(-1) with a regression coefficient of 0.9969 for trichlorfon. The detection limit is calculated to be about 0.032mugL(-1) for malathion and 0.001mugL(-1) for trichlorfon (S/N=3). Moreover, the biosensor exhibited acceptable reproducibility and long-term stability, which makes it possible to provide a novel and promising tool for analysis of organophosphate pesticides.
To improve the thermostability of the lipase LIP2 from Yarrowia lipolytica, molecular dynamics (MD) simulations at various temperatures were used to investigate the common fluctuation sites of the protein, which are considered to be thermally weak points. Two of these residues were selected for mutations to improve the enzyme's thermostability, and the variants predicted by MD simulations to have improved thermostability were expressed in Pichia pastoris GS115 for further investigations. According to the proline rule, the high fluctuation site S115 or V213 was replaced with proline residue, the two lipase mutants S115P and V213P were obtained. The mutant V213P exhibited evidently enhanced thermostability with an approximately 70% longer half-life at 50 degrees C than that of the parent LIP2 expressed in P. pastoris. The temperature optimum of V213P was 42 degrees C, which was about 5.0 degrees C higher than that of the parent LIP2, while its specific catalytic activity was comparable to that of the parent and reached 876.5U/mg. The improved thermostability of V213P together with its high catalytic efficiency indicated that the rational design strategy employed here can be efficiently applied for structure optimization of industrially important enzymes.
Arabidopsis (Arabidopsis thaliana) MAP KINASE (MPK) proteins can function in multiple MAP kinase cascades and physiological processes. For instance, MPK4 functions in regulating development as well as in plant defense by participating in two independent MAP kinase cascades: the MEKK1-MKK1/MKK2-MPK4 cascade promotes basal resistance against pathogens and is guarded by the NB-LRR protein SUMM2, whereas the ANPs-MKK6-MPK4 cascade plays an essential role in cytokinesis. Here, we report a novel role for MKK6 in regulating plant immune responses. We found that MKK6 functions similarly to MKK1/MKK2 and works together with MEKK1 and MPK4 to prevent autoactivation of SUMM2-mediated defense responses. Interestingly, loss of MKK6 or ANP2/ANP3 results in constitutive activation of plant defense responses. The autoimmune phenotypes of mkk6 and anp2 anp3 mutant plants can be largely suppressed by a constitutively active mpk4 mutant. Further analysis showed that the constitutive defense response in anp2 anp3 is dependent on the defense regulators PAD4 and EDS1, but not on SUMM2, suggesting that the ANP2/ANP3-MKK6-MPK4 cascade may be guarded by a TIR-NB-LRR protein. Our study shows that MKK6 has multiple functions in plant defense responses in addition to cytokinesis.
        
Title: Comprehensive Molecular Screening in Chinese Usher Syndrome Patients Sun T, Xu K, Ren Y, Xie Y, Zhang X, Tian L, Li Y Ref: Invest Ophthalmol Vis Sci, 59:1229, 2018 : PubMed
Purpose: Usher syndrome (USH) refers to a group of autosomal recessive disorders causing deafness and blindness. The objectives of this study were to determine the mutation spectrum in a cohort of Chinese patients with USH and to describe the clinical features of the patients with mutations. Methods: A total of 119 probands who were clinically diagnosed with USH were recruited for genetic analysis. All probands underwent ophthalmic examinations. A combination of molecular screening methods, including targeted next-generation sequencing, Sanger-DNA sequencing, and multiplex ligation probe amplification assay, was used to detect mutations. Results: We found biallelic mutations in 92 probands (77.3%), monoallelic mutations in 5 patients (4.2%), and 1 hemizygous mutation in 1 patient (0.8%), resulting in an overall mutation detection rate of 78.2%. Overall, 132 distinct disease-causing mutations involving seven USH (ABHD12, CDH23, GPR98, MYO7A, PCDH15, USH1C, and USH2A) genes; 5 other retinal degeneration genes (CHM, CNGA1, EYS, PDE6B, and TULP1); and 1 nonsyndromic hearing loss gene (MYO15A) were identified, and 78 were novel. Mutations of MYOA7 were responsible for 60% of USH1 families, followed by PCDH15 (20%) and USH1C (10%). Mutations of USH2A accounted for 67.7% of USH2 families, and mutation c.8559-2A>G was the most frequent one, accounting for 19.1% of the identified USH2A alleles. Conclusions: Our results confirm that the mutation spectrum for each USH gene in Chinese patients differs from those of other populations. The formation of the mutation profile for the Chinese population will enable a precise genetic diagnosis for USH patients in the future.
        
Title: New diterpenoids isolated from Leonurus japonicus and their acetylcholinesterase inhibitory activity Wu HK, Sun T, Zhao F, Zhang LP, Li G, Zhang J Ref: Chin J Nat Med, 15:860, 2017 : PubMed
Three new labdane diterpenoids, leojaponicone A (1), isoleojaponicone A (2) and methylisoleojaponicone A (3), were isolated from the herb of Leonurus japonicus. The chemical structures of these secondary metabolites were elucidated on the basis of 1D and 2D NMR, including HMQC, and HMBC spectroscopic techniques. All the new compounds were tested in vitro for their acetylcholinesterase and alpha-glucosidase inhibitory activity. Compounds 1-3 exhibited low inhibitory effects on alpha-glucosidase with respect to acarbose and exhibited high inhibitory effects on acetylcholinesterase with respect to huperzine A.
        
Title: Draft genome sequence of Streptomyces coelicoflavus ZG0656 reveals the putative biosynthetic gene cluster of acarviostatin family alpha-amylase inhibitors Guo X, Geng P, Bai F, Bai G, Sun T, Li X, Shi L, Zhong Q Ref: Lett Appl Microbiol, 55:162, 2012 : PubMed
AIMS: The aims of this study are to obtain the draft genome sequence of Streptomyces coelicoflavus ZG0656, which produces novel acarviostatin family alpha-amylase inhibitors, and then to reveal the putative acarviostatin-related gene cluster and the biosynthetic pathway. METHODS AND RESULTS: The draft genome sequence of S. coelicoflavus ZG0656 was generated using a shotgun approach employing a combination of 454 and Solexa sequencing technologies. Genome analysis revealed a putative gene cluster for acarviostatin biosynthesis, termed sct-cluster. The cluster contains 13 acarviostatin synthetic genes, six transporter genes, four starch degrading or transglycosylation enzyme genes and two regulator genes. On the basis of bioinformatic analysis, we proposed a putative biosynthetic pathway of acarviostatins. The intracellular steps produce a structural core, acarviostatin I00-7-P, and the extracellular assemblies lead to diverse acarviostatin end products. CONCLUSIONS: The draft genome sequence of S. coelicoflavus ZG0656 revealed the putative biosynthetic gene cluster of acarviostatins and a putative pathway of acarviostatin production. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, S. coelicoflavus ZG0656 is the first strain in this species for which a genome sequence has been reported. The analysis of sct-cluster provided important insights into the biosynthesis of acarviostatins. This work will be a platform for producing novel variants and yield improvement.
Bactrian camels serve as an important means of transportation in the cold desert regions of China and Mongolia. Here we present a 2.01 Gb draft genome sequence from both a wild and a domestic bactrian camel. We estimate the camel genome to be 2.38 Gb, containing 20,821 protein-coding genes. Our phylogenomics analysis reveals that camels shared common ancestors with other even-toed ungulates about 55-60 million years ago. Rapidly evolving genes in the camel lineage are significantly enriched in metabolic pathways, and these changes may underlie the insulin resistance typically observed in these animals. We estimate the genome-wide heterozygosity rates in both wild and domestic camels to be 1.0 x 10(-3). However, genomic regions with significantly lower heterozygosity are found in the domestic camel, and olfactory receptors are enriched in these regions. Our comparative genomics analyses may also shed light on the genetic basis of the camel's remarkable salt tolerance and unusual immune system.
Streptococcus thermophilus strain ND03 is a Chinese commercial dairy starter used for the manufacture of yogurt. It was isolated from naturally fermented yak milk in Qinghai, China. We present here the complete genome sequence of ND03 and compare it to three other published genomes of Streptococcus thermophilus strains.
Lactobacillus helveticus strain H10 was isolated from traditional fermented milk in Tibet, China. We sequenced the whole genome of strain H10 and compared it to the published genome sequence of Lactobacillus helveticus DPC4571.
Endothelial lipase, which is a newly identified member of the lipase family, plays an important role in high-density lipoprotein metabolism, which catalyzes the hydrolysis of high-density lipoprotein phospholipids and facilitates the clearance of high-density lipoprotein from the circulation. In addition, inflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1beta), upregulate endothelial lipase expression, and endothelial lipase also affects the expression of cytokines, which in turn play an important role in atherogenesis. Endothelial lipase expression has been associated with macrophages within human atherosclerotic lesions. However, an important challenge is to determine how endothelial lipase alters the progression of atherosclerosis. Although few data are available from human studies, it seems that plasma endothelial lipase levels in individuals with atherosclerosis might be higher than that measured in healthy individuals. Therefore, we believe that endothelial lipase might be a promising marker for atherosclerosis in clinical settings in the future.
Bifidobacterium animalis subsp. lactis strain V9 is a Chinese commercial bifidobacteria with several probiotic functions. It was isolated from a healthy Mongolian child in China. We present here the complete genome sequence of V9 and compare it to 3 other published genome sequences of B. animalis subsp. lactis strains. The result indicates the lack of polymorphism among strains of this subspecies from different continents.
        
Title: Differential modulation of muscarinic receptors in the rat brain by repeated exposure to methyl parathion Sun T, Ma T, Ho IK Ref: Journal of Toxicological Sciences, 28:427, 2003 : PubMed
The neurochemical and behavioral effects of repeated subdermal administration of methyl parathion (MP) at low doses were investigated. Adult male rats were treated repeatedly with either vehicle or MP subcutaneously (3 mg/kg/day) and observed for the signs of toxicity during the treatment period. The toxic sign, tremor, reached maximum right after 9th injection in MP-treated rats, and declined thereafter. Animals were sacrificed and brains were taken 1 week or 3 weeks after the daily treatment for measurement of acetylcholinesterase (AChE) activity and binding of radioligands, [3H]QNB (nonselective), [3H]pirenzepine (M1-selective), and [3H]AF-DX384 (M2-selective) to muscarinic receptors. With this treatment regimen, the AChE activity in the blood dropped quickly and maintained at 30% of the control level after 6 injections. After 3 weeks of treatment, MP caused 80-90% AChE inhibition and substantial reductions in [3H]QNB binding (9-33%), [3H]pirenzepine binding (9-22%) and [3H]AF-DX384 binding (6-38%) in different brain regions, including striatum, hippocampus, frontal cortex, thalamus and midbrain. After 1 week of treatment, the inhibition of AChE in brain regions was from 54 to 74%, whereas receptor densities were only marginally affected in a few regions. The timing of the changes in receptor population correlates well with the changes in behaviors during the repeated MP exposure. Our findings suggest that down-regulation of muscarinic receptors plays a role in the development of tolerance to MP. And, the regulations of muscarinic receptors were different among receptor subtypes and brain regions.
Rice is the principal food for over half of the population of the world. With its genome size of 430 megabase pairs (Mb), the cultivated rice species Oryza sativa is a model plant for genome research. Here we report the sequence analysis of chromosome 4 of O. sativa, one of the first two rice chromosomes to be sequenced completely. The finished sequence spans 34.6 Mb and represents 97.3% of the chromosome. In addition, we report the longest known sequence for a plant centromere, a completely sequenced contig of 1.16 Mb corresponding to the centromeric region of chromosome 4. We predict 4,658 protein coding genes and 70 transfer RNA genes. A total of 1,681 predicted genes match available unique rice expressed sequence tags. Transposable elements have a pronounced bias towards the euchromatic regions, indicating a close correlation of their distributions to genes along the chromosome. Comparative genome analysis between cultivated rice subspecies shows that there is an overall syntenic relationship between the chromosomes and divergence at the level of single-nucleotide polymorphisms and insertions and deletions. By contrast, there is little conservation in gene order between rice and Arabidopsis.