BACKGROUND: Bacopa monnieri, a herb used extensively, has shown neuroprotective effects in animal and invitro studies; human studies on patients with Alzheimer's Disease (AD) have been inconclusive. OBJECTIVE: The primary objective was to determine the clinical efficacy and safety of Bacopa monnieri (Brahmi) in persons with mild, moderate or severe dementia due to Alzheimer's disease and Mild Cognitive Impairment-Alzheimer's disease (MCI-AD). METHODS: We searched PubMed, Excerpta Medica dataBASE (EMBASE), Cochrane library, clinical trial registries (WHO, Aus-New Zealand, US and SA clinical registry), metaRegister of Controlled Trials (mRCT) and Cumulative Index to Nursing and Allied Health Literature (CINAHL). We intended to include ll randomized and quasi-randomized controlled trials that compared Bacopa monnieri, its extract or active ingredients (at any dosage) with placebo or one of the Cholinesterase inhibitors among adults with dementia due to AD and MCI-AD. RESULTS: Our comprehensive search yielded five eligible studies. Three studies used Bacopa in combination with herbal extracts while remaining two used Bacopa extracts only. Two studies compared Bacopa with Donepezil while others used placebo as control. There was considerable variation in dose of bacopa used (ranging between 125 mg to 500 mg twice daily) and heterogeneity in treatment durations, follow up and outcomes. The major outcomes were Mini-mental status examination reported in three trials, Alzheimer's disease assessment scale - Cognitive (ADAS-Cog) in one and a battery of cognitive tests in two studies. Using Cochrane risk of bias tool, overall, we judged all five studies to be at high risk of bias. While all studies reported statistically significant difference between Bacopa and comparator in at least one outcome, we rated overall quality of evidence for ADAS-Cog, PGI memory scale, Mini-Mental State Examination (MMSE) and Weschler memory scale to be very low because of downgrading by two levels for high risk of bias and one more level for impreciseness consequent to small sample sizes and wide confidence intervals. CONCLUSIONS: There is no difference between Bacopa and placebo or Donepezil in treatment of AD based on very low certainty evidence. No major safety issues were reported in the included trials. Future Randomized Controlled Trials (RCTs) must aim to recruit more participants and report clinically meaningful outcomes. CLINICALTRIAL: Crd42020169421.
The cholinesterases are essential targets implicated in the pathogenesis of Alzheimer's disease (AD). In the present study, virtual screening and molecular docking are performed to identify the potential hits. Docking-post processing (DPP) and pose filtration protocols against AChE and BChE resulted in three hits (AW00308, HTS04089, and JFD03947). Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) and molecular dynamics simulation analysis affirmed the stability and binding pattern of the docked complex JFD03947, which was further synthesized and evaluated for in vitro cholinesterase inhibition (AChE, IC50 = 0.062 microM; BChE, IC50 = 1.482 microM) activity. The enzyme kinetics study of the JFD03947 against hAChE and hBChE suggested a mixed type of inhibition. The results of thioflavin T-assay also elicited anti-Abeta aggregation activity by JFD03947. Further, biological evaluation of identified compound JFD03947 also showed neuroprotective ability against the SH-SY5Y neuroblastoma cell lines.
Enzymes in the prolyl oligopeptidase family possess unique structures and substrate specificities that are important for their biological activity and for potential biocatalytic applications. The crystal structures of Pyrococcus furiosus ( Pfu) prolyl oligopeptidase (POP) and the corresponding S477C mutant were determined to 1.9 and 2.2 A resolution, respectively. The wild type enzyme crystallized in an open conformation, indicating that this state is readily accessible, and it contained bound chloride ions and a prolylproline ligand. These structures were used as starting points for molecular dynamics simulations of Pfu POP conformational dynamics. The simulations showed that large-scale domain opening and closing occurred spontaneously, providing facile substrate access to the active site. Movement of the loop containing the catalytically essential histidine into a conformation similar to those found in structures with fully formed catalytic triads also occurred. This movement was modulated by chloride binding, providing a rationale for experimentally observed activation of POP peptidase catalysis by chloride. Thus, the structures and simulations reported in this study, combined with existing biochemical data, provide a number of insights into POP catalysis.
The novel hybrids bearing 4-aminopyridine (4-AP) tethered with substituted 1,3,4-oxadiazole nucleus were designed, synthesized, and evaluated for their potential AChE inhibitory property along with significant antioxidant potential. The inhibitory potential (IC50) of synthesized analogs was evaluated against human cholinesterases (hAChE and hBChE) using Ellman's method. Among all the compounds, 9 with 4-hydroxyl substituent showed maximum hAChE inhibition with the non-competitive type of enzyme inhibition (IC50=1.098microM; Ki=0.960microM). Further, parallel artificial membrane permeation assay (PAMPA-BBB) showed significant BBB permeability in most of the synthesized compounds. Meanwhile, compound 9 also inhibited AChE-induced Abeta aggregation (38.2-65.9%) by thioflavin T assay. The in vivo behavioral studies showed dose-dependent improvement in learning and memory by compound 9. The ex vivo studies also affirmed the significant AChE inhibition and antioxidant potential of compound 9 in brain homogenates.
The multitarget-directed strategy offers an effective and promising paradigm to treat the complex neurodegenerative disorder, such as Alzheimer's disease (AD). Herein, a series of N-benzylpiperidine analogs (17-31 and 32-46) were designed and synthesized as multi-functional inhibitors of acetylcholinesterase (AChE) and beta-secretase-1 (BACE-1) with moderate to excellent inhibitory activities. Among the tested inhibitors, 25, 26, 40, and 41 presented the most significant and balanced inhibition against both the targets. Compounds 40 and 41 exhibited high brain permeability in the PAMPA-BBB assay, significant displacement of propidium iodide from the peripheral anionic site (PAS) of AChE, and were devoid of neurotoxicity towards SH-SY5Y neuroblastoma cell lines up to the maximum tested concentration of 80muM. Meanwhile, both these compounds inhibited self- and AChE-induced Abeta aggregation in thioflavin T assay, which was also re-affirmed by morphological characterization of Abeta aggregates using atomic force microscopy (AFM). Moreover, 40 and 41 ameliorated the scopolamine-induced cognitive impairment in elevated plus and Y-maze experiments. Ex vivo and biochemical analysis established the brain AChE inhibitory potential and antioxidant properties of these compounds. Further, improvement in Abeta1-42-induced cognitive impairment was also observed by compound 41 in the Morris water maze experiment with significant oral absorption characteristics ascertained by the pharmacokinetic studies.
AD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD. The currently understood pathological and biochemical manifestations include cholinergic, Abeta, tau, excitotoxicity, oxidative stress, ApoE, CREB signaling pathways, insulin resistance, etc. However, these hypotheses have been criticized with several conflicting reports for their involvement in the disease progression. Several issues need to be addressed such as benefits to cost ratio with cholinesterase therapy, the dilemma of AChE selectivity over BChE, BBB permeability of peptidic BACE-1 inhibitors, hurdles related to the implementation of vaccination and immunization therapy, and clinical failure of candidates related to newly available targets. The present review provides an insight to the different molecular mechanisms involved in the development and progression of the AD and potential therapeutic strategies, enlightening perceptions into structural information of conventional and novel targets along with the successful applications of computational approaches for the design of target-specific inhibitors.
        
Title: Design, synthesis, and evaluation of novel N-(4-phenoxybenzyl)aniline derivatives targeting acetylcholinesterase, beta-amyloid aggregation and oxidative stress to treat Alzheimer's disease Srivastava P, Tripathi PN, Sharma P, Shrivastava SK Ref: Bioorganic & Medicinal Chemistry, 27:3650, 2019 : PubMed
Novel hybrids N-(4-phenoxybenzyl)aniline were designed, synthesized, and evaluated for their potential AChE inhibitory activity along with antioxidant potential. The inhibitory potential (IC50) of synthesized analogs was evaluated against human cholinesterases (hAChE and hBChE) using Ellman's method. Among all the tested compounds, 42 with trimethoxybenzene substituent showed maximum hAChE inhibition with the competitive type of enzyme inhibition (IC50=1.32microM; Ki=0.879microM). Further, parallel artificial membrane permeation assay (PAMPA-BBB) showed favorable BBB permeability by most of the synthesized compounds. Meanwhile, compound 42 also inhibited AChE-induced Abeta aggregation (39.5-66.9%) in thioflavin T assay. The in vivo behavioral studies showed dose-dependent improvement in learning and memory by compound 42. The ex vivo studies also affirmed the significant AChE inhibition and antioxidant potential of compound 42 in brain homogenates.
        
Title: Design and development of novel N-(pyrimidin-2-yl)-1,3,4-oxadiazole hybrids to treat cognitive dysfunctions Tripathi PN, Srivastava P, Sharma P, Seth A, Shrivastava SK Ref: Bioorganic & Medicinal Chemistry, 27:1327, 2019 : PubMed
Novel hybrids bearing a 2-aminopyrimidine (2-AP) moiety linked to substituted 1,3,4-oxadiazoles were designed, synthesized and biologically evaluated. Among the developed compounds, 28 noncompetitively inhibited human acetylcholinesterase (hAChE; pIC50=6.52; Ki=0.17microM) and showed potential in vitro antioxidant activity (60.0%) when evaluated using the Ellman's and DPPH assays, respectively. Compound 28 competitively displaced propidium iodide (PI) from the peripheral anionic site (PAS) of hAChE (17.6%) and showed high blood-brain barrier (BBB) permeability, as observed in the PAMPA-BBB assay. Additionally, compound 28 inhibited hAChE-induced Abeta aggregation in a concentration-dependent manner according to the thioflavin T assay and was devoid of neurotoxic liability towards SH-SY5Y cell lines, as demonstrated by the MTT assay. The behavioral studies of compound 28 in mice showed a significant reversal of scopolamine-induced amnesia, as observed in Y-maze and passive avoidance tests. Furthermore, compound 28 exhibited significant AChE inhibition in the brain in ex vivo studies. An evaluation of oxidative stress biomarkers revealed the antioxidant potential of 28. Moreover, in silico molecular docking and dynamics simulation studies were used as a computational tool to evaluate the interactions of compound 28 with the active site residues of hAChE.
Based on the quantitative structure-activity relationship (QSAR), some novel p-aminobenzoic acid derivatives as promising cholinesterase enzyme inhibitors were designed, synthesized, characterized and evaluated to enhance learning and memory. The in vitro enzyme kinetic study of the synthesized compounds revealed the type of inhibition on the respective acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. The in vivo studies of the synthesized compounds exhibited significant reversal of cognitive deficits in the animal models of amnesia as compared to standard drug donepezil. Further, the ex vivo studies in the specific brain regions like the hippocampus, hypothalamus, and prefrontal cortex regions also exhibited AChE inhibition comparable to standard donepezil. The in silico molecular docking and dynamics simulations studies of the most potent compound 22 revealed the consensual interactions at the active site pocket of the AChE.
Based on the Gaussian-based quantitative structure-activity relationship (QSAR) and virtual screening (VS) processes, some promising acetylcholinesterase inhibitors (AChEIs) having antioxidant potential were designed synthesized, characterized, and evaluated for their ability to enhance learning and memory. The synthesized phenyl benzoxazole derivatives exhibited significant antioxidant potential and AChE inhibitory activity, whereas the antioxidant potential of compound 34 (49.6%) was observed significantly better than standard donepezil (<10%) and parallel to ascorbic acid (56.6%). Enzyme kinetics study of most potent compound 34 (AChE IC50=0.363+/-0.017muM; Ki=0.19+/-0.03muM) revealed the true nature and competitive type of inhibition on AChE. The compound 34 was further assessed for in vivo and ex vivo studies and the results showed the significant reversal of cognitive deficits and antioxidant potential at the dose of 5mg/kg comparable to standard drug donepezil.
A series of novel piperazine tethered biphenyl-3-oxo-1,2,4-triazine derivatives were designed, and synthesized. Amongst the synthesized analogs, compound 6g showed significant non-competitive inhibitory potential against acetylcholinesterase (AChE, IC50; 0.2+/-0.01muM) compared to standard donepezil (AChE, IC50: 0.1+/-0.002muM). Compound 6g also exhibited significant displacement of propidium iodide from the peripheral anionic site (PAS) of AChE (22.22+/-1.11%) and showed good CNS permeability in PAMPA-BBB assay (Pe(exp), 6.93+/-0.46). The in vivo behavioral studies of compound 6g indicated significant improvement in cognitive dysfunctions against scopolamine-induced amnesia mouse models. Further, ex vivo studies showed a significant AChE inhibition and reversal of the scopolamine-induced oxidative stress by compound 6g. Moreover, molecular docking and dynamics simulations of compound 6g showed a consensual binding affinity and active site interactions with the PAS and active catalytic site (CAS) residues of AChE.
Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N-H, S-H and Si-H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.
With the increasing evidences of cadmium-induced cognitive deficits associated with brain cholinergic dysfunctions, the present study aimed to decipher molecular mechanisms involved in the neuroprotective efficacy of quercetin in rats. A decrease in the binding of cholinergic-muscarinic receptors and mRNA expression of cholinergic receptor genes (M1, M2, and M4) was observed in the frontal cortex and hippocampus on exposure of rats to cadmium (5.0 mg/kg body weight, p.o.) for 28 days compared to controls. Cadmium exposure resulted to decrease mRNA and protein expressions of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) and enhance reactive oxygen species (ROS) generation associated with mitochondrial dysfunctions, ultrastructural changes, and learning deficits. Enhanced apoptosis, as evidenced by alterations in key proteins involved in the pro- and anti-apoptotic pathway and mitogen-activated protein (MAP) kinase signaling, was evident on cadmium exposure. Simultaneous treatment with quercetin (25 mg/kg body weight, p.o.) resulted to protect cadmium-induced alterations in cholinergic-muscarinic receptors, mRNA expression of genes (M1, M2, and M4), and expression of ChAT and AChE. The protective effect on brain cholinergic targets was attributed to the antioxidant potential of quercetin, which reduced ROS generation and protected mitochondrial integrity by modulating proteins involved in apoptosis and MAP kinase signaling. The results exhibit that quercetin may modulate molecular targets involved in brain cholinergic signaling and attenuate cadmium neurotoxicity.
        
Title: Design, synthesis and evaluation of some N-methylenebenzenamine derivatives as selective acetylcholinesterase (AChE) inhibitor and antioxidant to enhance learning and memory Shrivastava SK, Srivastava P, Upendra TV, Tripathi PN, Sinha SK Ref: Bioorganic & Medicinal Chemistry, 25:1471, 2017 : PubMed
Series of some 3,5-dimethoxy-N-methylenebenzenamine and 4-(methyleneamino)benzoic acid derivatives comprising of N-methylenebenzenamine nucleus were designed, synthesized, characterized, and assessed for their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitory, and antioxidant activity thereby improving learning and memory in rats. The IC50 values of all the compound along with standard were determined on AChE and BChE enzyme. The free radical scavenging activity was also assessed by in vitro DPPH (2,2-diphenyl-1-picryl-hydrazyl) and hydrogen peroxide radical scavenging assay. The selective inhibitions of all compounds were observed against AChE in comparison with standard donepezil. The enzyme kinetic study of the most active compound 4 indicated uncompetitive AChE inhibition. The docking studies of compound 4 exhibited the worthy interaction on active-site gorge residues Phe330 and Trp279 responsible for its high affinity towards AChE, whereas lacking of the BChE inhibition was observed due to a wider gorge binding site and absence of important aromatic amino acids interactions. The ex vivo study confirmed AChE inhibition abilities of compound 4 at brain site. Further, a considerable decrease in escape latency period of the compound was observed in comparison with standard donepezil through in vivo Spatial Reference Memory (SRM) and Spatial Working Memory (SWM) models which showed the cognition-enhancing potential of compound 4. The in vivo reduced glutathione (GSH) estimation on rat brain tissue homogenate was also performed to evaluate free radical scavenging activity substantiated the antioxidant activity in learning and memory.
Role of immobilization stress (IMS), a psychological stressor and forced swim stress (FSS), a physical stressor was investigated on the neurobehavioral toxicity of lambda-cyhalothrin (LCT), a new generation type-II synthetic pyrethroid. Pre-exposure of rats to IMS (15 min/day) or FSS (3 min/day) for 28 days on LCT (3.0 mg/kg body weight, p.o.) treatment for 3 days resulted to decrease spatial learning and memory and muscle strength associated with cholinergic-muscarinic receptors in frontal cortex and hippocampus as compared to those exposed to IMS or FSS or LCT alone. Decrease in acetylcholinesterase activity, protein expression of ChAT and PKC-beta1 associated with decreased mRNA expression of CHRM2, AChE and ChAT in frontal cortex and hippocampus was also evident in rats pre-exposed to IMS or FSS on LCT treatment, compared to rats exposed to IMS or FSS or LCT alone. Interestingly, changes both in behavioral and neurochemical endpoints were marginal in rats subjected to IMS or FSS for 28 days or those exposed to LCT for 3 days alone, compared to controls. The results suggest that stress is an important contributor in LCT induced cholinergic deficits.
Artificial metalloenzymes (ArMs) formed by incorporating synthetic metal catalysts into protein scaffolds have the potential to impart to chemical reactions selectivity that would be difficult to achieve using metal catalysts alone. In this work, we covalently link an alkyne-substituted dirhodium catalyst to a prolyl oligopeptidase containing a genetically encoded L-4-azidophenylalanine residue to create an ArM that catalyses olefin cyclopropanation. Scaffold mutagenesis is then used to improve the enantioselectivity of this reaction, and cyclopropanation of a range of styrenes and donor-acceptor carbene precursors were accepted. The ArM reduces the formation of byproducts, including those resulting from the reaction of dirhodium-carbene intermediates with water. This shows that an ArM can improve the substrate specificity of a catalyst and, for the first time, the water tolerance of a metal-catalysed reaction. Given the diversity of reactions catalysed by dirhodium complexes, we anticipate that dirhodium ArMs will provide many unique opportunities for selective catalysis.
The emergence of drug resistant tuberculosis necessitates a search for new antimycobacterial compounds. The antigen 85 (ag85) complex is a family of mycolyl transferases involved in the synthesis of trehalose-6,6'-dimycolate and the mycolated hexasaccharide motif found at the terminus of the arabinogalactan in mycobacterium. Enzymes involved in the synthesis of cell wall structures like these are potential targets for the development of new antiinfectives. To potentially inhibit the ag85 complex, methyl 5-S-alkyl-5-thio-arabinofuranoside analogues were designed based on docking studies with ag85C derived from Mycobacterium tuberculosis. The target arabinofuranosides were then synthesized and the antibacterial activity evaluated against Mycobacterium smegmatis ATCC 14468. Two of the compounds, 5-S-octyl-5-thio-alpha-d-arabinofuranoside (8) and 5-S-octyl-5-thio-beta-d-arabinofuranoside (11), showed MICs of 256 and 512microg/mL, respectively. Attempts to directly evaluate acyltransferase inhibitory activity of the arabinofuranosides against ag85C are also described. In conclusion, a new class of antimycobacterial arabinofuranosides has been discovered.
        
Title: QSAR study on 1-benzyl-4[w(substituted phthalimido)alkyl]piperidines:acetyl cholinesterase inhibitors Srivastava AK, Khare A, Agrawal S, Srivastava P Ref: Indian J Biochem Biophys, 35:393, 1998 : PubMed
QSAR studies on a series of 18 piperidine derivatives, which act as acetyl cholinesterase (AchE) inhibitors, have been performed using van der Waals volume (V omega) and topochemical index (tau). Significant correlations have been obtained, which make it clear that AchE inhibition activity is controlled dominantly by topo chemical index.