CD26, the T cell activation molecule dipeptidyl peptidase IV (DPPIV), associates with a 43-kilodalton protein. Amino acid sequence analysis and immunoprecipitation studies demonstrated that this 43-kilodalton protein was adenosine deaminase (ADA). ADA was coexpressed with CD26 on the Jurkat T cell lines, and an in vitro binding assay showed that the binding was through the extracellular domain of CD26. ADA deficiency causes severe combined immunodeficiency disease (SCID) in humans. Thus, ADA and CD26 (DPPIV) interact on the T cell surface, and this interaction may provide a clue to the pathophysiology of SCID caused by ADA deficiency.
A cDNA encoding the T cell activation Ag CD26 was isolated from human PHA-activated T cells by using an expression cloning method. The nucleotide sequence obtained predicts a protein of 766 amino acids of type II membrane topology, with six amino acids in the cytoplasmic region. The predicted amino acid sequence of the Ag was 85% homologous to that of the dipeptidyl peptidase IV enzyme isolated from rat liver. Derivatives of the human leukemic T cell line Jurkat transfected with a CD26 expression plasmid were established. Characterization of the CD26 Ag expressed by the transfected Jurkat cells revealed that the Ag could be immunoprecipitated as a 110-kDa molecule similar to that found on peripheral blood T cells and that the Ag had dipeptidyl peptidase IV activity. Functional analysis of these Jurkat transfectants showed that cross-linking of the CD26 and CD3 Ag with their respective antibodies resulted in enhanced intracellular calcium mobilization and IL-2 production. These results provide direct evidence that the CD26 Ag plays a role in T cell activation.