Mutations in neurexin and neuroligin genes have been associated with neurodevelopmental disabilities including autism. Autism spectrum disorder is diagnosed by aberrant reciprocal social interactions, deficits in social communication, and repetitive, stereotyped patterns of behaviors, along with narrow restricted interests. Mouse models have been successfully used to study physiological and behavioral outcomes of mutations in the trans-synaptic neurexin-neuroligin complex. To further understand the behavioral consequences of Neuroligin2 (NLGN2) mutations, we assessed several behavioral phenotypes relevant to autism in neuroligin2 null (Nlgn2(-/-)), heterozygote (Nlgn2(+/-)), and wildtype (Nlgn2(+/+)) littermate control mice. Reduced breeding efficiency and high reactivity to handling was observed in Nlgn2(-/-) mice, resulting in low numbers of adult mice available for behavioral assessment. Consistent with previous findings, Nlgn2(-/-) mice displayed normal social behaviors, concomitant with reduced exploratory activity, impaired rotarod performance, and delays on several developmental milestones. No spontaneous stereotypies or repetitive behaviors were detected. Acoustic, tactile, and olfactory sensory information processing as well as sensorimotor gating were not affected. Nlgn2(-/-) pups isolated from mother and littermates emitted fewer ultrasonic vocalizations and spent less time calling than Nlgn2(+/+) littermate controls. The present findings add to the growing literature on the role of neurexins and neuroligins in physiology and behavior relevant to neurodevelopmental disorders.
Neuroligin-3 is a member of the class of cell adhesion proteins that mediate synapse development and have been implicated in autism. Mice with the human R451C mutation (NL3), identical to the point mutation found in two brothers with autism spectrum disorders, were generated and phenotyped in multiple behavioral assays with face validity to the diagnostic symptoms of autism. No differences between NL3 and their wildtype (WT) littermate controls were detected on measures of juvenile reciprocal social interaction, adult social approach, cognitive abilities, and resistance to change in a spatial habit, findings which were replicated in several cohorts of males and females. Physical and procedural abilities were similar across genotypes on measures of general health, sensory abilities, sensorimotor gating, motor functions, and anxiety-related traits. Minor developmental differences were detected between NL3 and WT, including slightly different rates of somatic growth, slower righting reflexes at postnatal days 2-6, faster homing reflexes in females, and less vocalizations on postnatal day 8 in males. Significant differences in NL3 adults included somewhat longer latencies to fall from the rotarod, less vertical activity in the open field, and less acoustic startle to high decibel tones. The humanized R451C mutation in mice did not result in apparent autism-like phenotypes, but produced detectable functional consequences that may be interpreted in terms of physical development and/or reduced sensitivity to stimuli.