Pleiotropic intervention may be a requirement for effective limitation of the progression of multifactorial diseases such as Alzheimer's Disease. One approach to such intervention is to design a single chemical entity capable of acting on two or more targets of interest, which are accordingly known as Multi-Target Directed Ligands (MTDLs). We recently described donecopride, the first MTDL able to simultaneously inhibit acetylcholinesterase and act as an agonist of the 5-HT4 receptor, which displays promising activities in vivo. Pharmacomodulation of donecopride allowed us to develop a novel series of indole derivatives possessing interesting in vitro activities toward AChE and the sigma1 receptor. The crystal structures of complexes of the most promising compounds with Torpedo californica AChE were solved in order to further understand their mode of inhibition.
The enzyme butyrylcholinesterase (BChE) and the human cannabinoid receptor 2 (hCB2R) represent promising targets for pharmacotherapy in the later stages of Alzheimer's disease. We merged pharmacophores for both targets into small benzimidazole-based molecules, investigated SARs, and identified several dual-acting ligands with a balanced affinity/inhibitory activity and an excellent selectivity over both hCB1R and hAChE. A homology model for the hCB2R was developed based on the hCB1R crystal structure and used for molecular dynamics studies to investigate binding modes. In vitro studies proved hCB2R agonism. Unwanted mu-opioid receptor affinity could be designed out. One well-balanced dual-acting and selective hBChE inhibitor/hCB2R agonist showed superior in vivo activity over the lead CB2 agonist with regards to cognition improvement. The data shows the possibility to combine a small molecule with selective and balanced GPCR-activity/enzyme inhibition and in vivo activity for the therapy of AD and may help to rationalize the development of other dual-acting ligands.
Acetylcholinesterase (AChE), a key enzyme in the central and peripheral nervous systems, is the principal target of organophosphorus nerve agents. Quaternary oximes can regenerate AChE activity by displacing the phosphyl group of the nerve agent from the active site, but they are poorly distributed in the central nervous system. A promising reactivator based on tetrahydroacridine linked to a nonquaternary oxime is also an undesired submicromolar reversible inhibitor of AChE. X-ray structures and molecular docking indicate that structural modification of the tetrahydroacridine might decrease inhibition without affecting reactivation. The chlorinated derivative was synthesized and, in line with the prediction, displayed a 10-fold decrease in inhibition but no significant decrease in reactivation efficiency. X-ray structures with the derivative rationalize this outcome. We thus show that rational design based on structural studies permits the refinement of new-generation pyridine aldoxime reactivators that may be more effective in the treatment of nerve agent intoxication.
Human butyrylcholinesterase is a performant stoichiometric bioscavenger of organophosphorous nerve agents. It is either isolated from outdated plasma or functionally expressed in eukaryotic systems. Here, we report the production of active human butyrylcholinesterase in a prokaryotic system after optimization of the primary sequence through the Protein Repair One Stop Shop process, a structure- and sequence-based algorithm for soluble bacterial expression of difficult eukaryotic proteins. The mutant enzyme was purified to homogeneity. Its kinetic parameters with substrate are similar to the endogenous human butyrylcholinesterase or recombinants produced in eukaryotic systems. The isolated protein was prone to crystallize and its 2.5-A X-ray structure revealed an active site gorge region identical to that of previously solved structures. The advantages of this alternate expression system, particularly for the generation of butyrylcholinesterase variants with nerve agent hydrolysis activity, are discussed.
A series of new uncharged functional acetylcholinesterase (AChE) reactivators including heterodimers of tetrahydroacridine with 3-hydroxy-2-pyridine aldoximes and amidoximes has been synthesized. These novel molecules display in vitro reactivation potencies towards VX-, tabun- and paraoxon-inhibited human AChE that are superior to those of the mono- and bis-pyridinium aldoximes currently used against nerve agent and pesticide poisoning. Furthermore, these uncharged compounds exhibit a broader reactivity spectrum compared to currently approved remediation drugs.
The enzyme-directed synthesis is an emerging fragment-based lead discovery approach in which the biological target is able to assemble its own multidentate ligands from a pool of building blocks. Here, we report for the first time the use of the human acetylcholinesterase (AChE) as an enzyme for the design and synthesis of new potent heterodimeric huprine-based inhibitors. Both the specific click chemistry site within the protein and the regioselectivity of the Huisgen cycloaddition observed suggest promising alternatives in the design of efficient mono- and dimeric ligands of AChE. Finally, a detailed computational modelling of the click reaction was conducted to further understand the origin of this TGS selectivity.
Tri-o-cresyl-phosphate (TOCP) is a common additive in jet engine lubricants and hydraulic fluids suspected to have a role in aerotoxic syndrome in humans. TOCP is metabolized to cresyl saligenin phosphate (CBDP), a potent irreversible inhibitor of butyrylcholinesterase (BChE), a natural bioscavenger present in the bloodstream, and acetylcholinesterase (AChE), the off-switch at cholinergic synapses. Mechanistic details of cholinesterase (ChE) inhibition have, however, remained elusive. Also, the inhibition of AChE by CBDP is unexpected, from a structural standpoint, i.e., considering the narrowness of AChE active site and the bulkiness of CBDP. In the following, we report on kinetic X-ray crystallography experiments that provided 2.7-3.3 A snapshots of the reaction of CBDP with mouse AChE and human BChE. The series of crystallographic snapshots reveals that AChE and BChE react with the opposite enantiomers and that an induced-fit rearrangement of Phe297 enlarges the active site of AChE upon CBDP binding. Mass spectrometry analysis of aging in either H(2)(16)O or H(2)(18)O furthermore allowed us to identify the inhibition steps, in which water molecules are involved, thus providing insights into the mechanistic details of inhibition. X-ray crystallography and mass spectrometry show the formation of an aged end product formed in both AChE and BChE that cannot be reactivated by current oxime-based therapeutics. Our study thus shows that only prophylactic and symptomatic treatments are viable to counter the inhibition of AChE and BChE by CBDP.