Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
Aims Darapladib, a potent inhibitor of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), has not reduced risk of cardiovascular disease outcomes in recent randomized trials. We aimed to test whether Lp-PLA(2) enzyme activity is causally relevant to coronary heart disease. Methods In 72,657 patients with coronary heart disease and 110,218 controls in 23 epidemiological studies, we genotyped five functional variants: four rare loss-of-function mutations (c.109+2T > C (rs142974898), Arg82His (rs144983904), Val279Phe (rs76863441), Gln287Ter (rs140020965)) and one common modest-impact variant (Val379Ala (rs1051931)) in PLA2G7, the gene encoding Lp-PLA(2). We supplemented de-novo genotyping with information on a further 45,823 coronary heart disease patients and 88,680 controls in publicly available databases and other previous studies. We conducted a systematic review of randomized trials to compare effects of darapladib treatment on soluble Lp-PLA(2) activity, conventional cardiovascular risk factors, and coronary heart disease risk with corresponding effects of Lp-PLA(2)-lowering alleles. Results Lp-PLA(2) activity was decreased by 64% ( p = 2.4 x 10(-25)) with carriage of any of the four loss-of-function variants, by 45% ( p < 10(-300)) for every allele inherited at Val279Phe, and by 2.7% ( p = 1.9 x 10(-12)) for every allele inherited at Val379Ala. Darapladib 160 mg once-daily reduced Lp-PLA(2) activity by 65% ( p < 10(-300)). Causal risk ratios for coronary heart disease per 65% lower Lp-PLA(2) activity were: 0.95 (0.88-1.03) with Val279Phe; 0.92 (0.74-1.16) with carriage of any loss-of-function variant; 1.01 (0.68-1.51) with Val379Ala; and 0.95 (0.89-1.02) with darapladib treatment. Conclusions In a large-scale human genetic study, none of a series of Lp-PLA(2)-lowering alleles was related to coronary heart disease risk, suggesting that Lp-PLA(2) is unlikely to be a causal risk factor.
Importance: The activity of lipoprotein lipase (LPL) is the rate-determining step in clearing triglyceride-rich lipoproteins from the circulation. Mutations that damage the LPL gene (LPL) lead to lifelong deficiency in enzymatic activity and can provide insight into the relationship of LPL to human disease. Objective: To determine whether rare and/or common variants in LPL are associated with early-onset coronary artery disease (CAD). Design, Setting, and Participants: In a cross-sectional study, LPL was sequenced in 10 CAD case-control cohorts of the multinational Myocardial Infarction Genetics Consortium and a nested CAD case-control cohort of the Geisinger Health System DiscovEHR cohort between 2010 and 2015. Common variants were genotyped in up to 305699 individuals of the Global Lipids Genetics Consortium and up to 120600 individuals of the CARDIoGRAM Exome Consortium between 2012 and 2014. Study-specific estimates were pooled via meta-analysis. Exposures: Rare damaging mutations in LPL included loss-of-function variants and missense variants annotated as pathogenic in a human genetics database or predicted to be damaging by computer prediction algorithms trained to identify mutations that impair protein function. Common variants in the LPL gene region included those independently associated with circulating triglyceride levels. Main Outcomes and Measures: Circulating lipid levels and CAD. Results: Among 46891 individuals with LPL gene sequencing data available, the mean (SD) age was 50 (12.6) years and 51% were female. A total of 188 participants (0.40%; 95% CI, 0.35%-0.46%) carried a damaging mutation in LPL, including 105 of 32646 control participants (0.32%) and 83 of 14245 participants with early-onset CAD (0.58%). Compared with 46703 noncarriers, the 188 heterozygous carriers of an LPL damaging mutation displayed higher plasma triglyceride levels (19.6 mg/dL; 95% CI, 4.6-34.6 mg/dL) and higher odds of CAD (odds ratio = 1.84; 95% CI, 1.35-2.51; P < .001). An analysis of 6 common LPL variants resulted in an odds ratio for CAD of 1.51 (95% CI, 1.39-1.64; P = 1.1 x 10-22) per 1-SD increase in triglycerides. Conclusions and Relevance: The presence of rare damaging mutations in LPL was significantly associated with higher triglyceride levels and presence of coronary artery disease. However, further research is needed to assess whether there are causal mechanisms by which heterozygous lipoprotein lipase deficiency could lead to coronary artery disease.
Neuronal nicotinic acetylcholine receptor (nAChR) genes (CHRNA5/CHRNA3/CHRNB4) have been reproducibly associated with nicotine dependence, smoking behaviors, and lung cancer risk. Of the few reports that have focused on early smoking behaviors, association results have been mixed. This meta-analysis examines early smoking phenotypes and SNPs in the gene cluster to determine: (1) whether the most robust association signal in this region (rs16969968) for other smoking behaviors is also associated with early behaviors, and/or (2) if additional statistically independent signals are important in early smoking. We focused on two phenotypes: age of tobacco initiation (AOI) and age of first regular tobacco use (AOS). This study included 56,034 subjects (41 groups) spanning nine countries and evaluated five SNPs including rs1948, rs16969968, rs578776, rs588765, and rs684513. Each dataset was analyzed using a centrally generated script. Meta-analyses were conducted from summary statistics. AOS yielded significant associations with SNPs rs578776 (beta = 0.02, P = 0.004), rs1948 (beta = 0.023, P = 0.018), and rs684513 (beta = 0.032, P = 0.017), indicating protective effects. There were no significant associations for the AOI phenotype. Importantly, rs16969968, the most replicated signal in this region for nicotine dependence, cigarettes per day, and cotinine levels, was not associated with AOI (P = 0.59) or AOS (P = 0.92). These results provide important insight into the complexity of smoking behavior phenotypes, and suggest that association signals in the CHRNA5/A3/B4 gene cluster affecting early smoking behaviors may be different from those affecting the mature nicotine dependence phenotype.
OBJECTIVE: Autosomal recessive hypercholesterolemia is a rare inherited disorder, characterized by extremely high total and low-density lipoprotein cholesterol levels, that has been previously linked to mutations in LDLRAP1. We identified a family with autosomal recessive hypercholesterolemia not explained by mutations in LDLRAP1 or other genes known to cause monogenic hypercholesterolemia. The aim of this study was to identify the molecular pathogenesis of autosomal recessive hypercholesterolemia in this family. APPROACH AND RESULTS: We used exome sequencing to assess all protein-coding regions of the genome in 3 family members and identified a homozygous exon 8 splice junction mutation (c.894G>A, also known as E8SJM) in LIPA that segregated with the diagnosis of hypercholesterolemia. Because homozygosity for mutations in LIPA is known to cause cholesterol ester storage disease, we performed directed follow-up phenotyping by noninvasively measuring hepatic cholesterol content. We observed abnormal hepatic accumulation of cholesterol in the homozygote individuals, supporting the diagnosis of cholesterol ester storage disease. Given previous suggestions of cardiovascular disease risk in heterozygous LIPA mutation carriers, we genotyped E8SJM in >27 000 individuals and found no association with plasma lipid levels or risk of myocardial infarction, confirming a true recessive mode of inheritance. CONCLUSIONS: By integrating observations from Mendelian and population genetics along with directed clinical phenotyping, we diagnosed clinically unapparent cholesterol ester storage disease in the affected individuals from this kindred and addressed an outstanding question about risk of cardiovascular disease in LIPA E8SJM heterozygous carriers.
CONTEXT: Recent studies have shown an association between cigarettes per day (CPD) and a nonsynonymous single-nucleotide polymorphism in CHRNA5, rs16969968. OBJECTIVE: To determine whether the association between rs16969968 and smoking is modified by age at onset of regular smoking. DATA SOURCES: Primary data. STUDY SELECTION: Available genetic studies containing measures of CPD and the genotype of rs16969968 or its proxy. DATA EXTRACTION: Uniform statistical analysis scripts were run locally. Starting with 94,050 ever-smokers from 43 studies, we extracted the heavy smokers (CPD >20) and light smokers (CPD </=10) with age-at-onset information, reducing the sample size to 33,348. Each study was stratified into early-onset smokers (age at onset </=16 years) and late-onset smokers (age at onset >16 years), and a logistic regression of heavy vs light smoking with the rs16969968 genotype was computed for each stratum. Meta-analysis was performed within each age-at-onset stratum. DATA SYNTHESIS: Individuals with 1 risk allele at rs16969968 who were early-onset smokers were significantly more likely to be heavy smokers in adulthood (odds ratio [OR] = 1.45; 95% CI, 1.36-1.55; n = 13,843) than were carriers of the risk allele who were late-onset smokers (OR = 1.27; 95% CI, 1.21-1.33, n = 19,505) (P = .01). CONCLUSION: These results highlight an increased genetic vulnerability to smoking in early-onset smokers.
BACKGROUND: Plasma levels of high-density lipoprotein cholesterol (HDL-C) are known to be heritable, but only a fraction of the heritability is explained. We used a high-density genotyping array containing single-nucleotide polymorphisms (SNPs) from HDL-C candidate genes selected on known biology of HDL-C metabolism, mouse genetic studies, and human genetic association studies. SNP selection was based on tagging SNPs and included low-frequency nonsynonymous SNPs. METHODS AND RESULTS: Association analysis in a cohort containing extremes of HDL-C (case-control, n=1733) provided a discovery phase, with replication in 3 additional populations for a total meta-analysis in 7857 individuals. We replicated the majority of loci identified through genome-wide association studies and present on the array (including ABCA1, APOA1/C3/A4/A5, APOB, APOE/C1/C2, CETP, CTCF-PRMT8, FADS1/2/3, GALNT2, LCAT, LILRA3, LIPC, LIPG, LPL, LRP4, SCARB1, TRIB1, ZNF664) and provide evidence that suggests an association in several previously unreported candidate gene loci (including ABCG1, GPR109A/B/81, NFKB1, PON1/2/3/4). There was evidence for multiple, independent association signals in 5 loci, including association with low-frequency nonsynonymous variants. CONCLUSIONS: Genetic loci associated with HDL-C are likely to harbor multiple, independent causative variants, frequently with opposite effects on the HDL-C phenotype. Cohorts comprising subjects at the extremes of the HDL-C distribution may be efficiently used in a case-control discovery of quantitative traits.
BACKGROUND: eQTL analyses are important to improve the understanding of genetic association results. We performed a genome-wide association and global gene expression study to identify functionally relevant variants affecting the risk of coronary artery disease (CAD). METHODS AND RESULTS: In a genome-wide association analysis of 2078 CAD cases and 2953 control subjects, we identified 950 single-nucleotide polymorphisms (SNPs) that were associated with CAD at P<10(-3). Subsequent in silico and wet-laboratory replication stages and a final meta-analysis of 21 428 CAD cases and 38 361 control subjects revealed a novel association signal at chromosome 10q23.31 within the LIPA (lysosomal acid lipase A) gene (P=3.7x10(-8); odds ratio, 1.1; 95% confidence interval, 1.07 to 1.14). The association of this locus with global gene expression was assessed by genome-wide expression analyses in the monocyte transcriptome of 1494 individuals. The results showed a strong association of this locus with expression of the LIPA transcript (P=1.3x10(-96)). An assessment of LIPA SNPs and transcript with cardiovascular phenotypes revealed an association of LIPA transcript levels with impaired endothelial function (P=4.4x10(-3)). CONCLUSIONS: The use of data on genetic variants and the addition of data on global monocytic gene expression led to the identification of the novel functional CAD susceptibility locus LIPA, located on chromosome 10q23.31. The respective eSNPs associated with CAD strongly affect LIPA gene expression level, which was related to endothelial dysfunction, a precursor of CAD.
Copy number variation has emerged recently as an important genetic mechanism leading to phenotypic heterogeneity. The aim of our study was to determine whether copy number variants (CNVs) exist between the spontaneously hypertensive rat (SHR) and its control strain, the Wistar-Kyoto rat, whether these map to quantitative trait loci in the rat and whether CNVs associate with gene expression or blood pressure differences between the 2 strains. We performed a comparative genomic hybridization assay between SHR and Wistar-Kyoto strains using a whole-genome array. In total, 16 CNVs were identified and validated (6 because of a relative loss of copy number in the SHR and 10 because of a relative gain). CNVs were present on rat autosomes 1, 3, 4, 6, 7, 10, 14, and 17 and varied in size from 10.0 kb to 1.6 Mb. Most of these CNVs mapped to chromosomal regions within previously identified quantitative trait loci, including those for blood pressure in the SHR. Transcriptomic experiments confirmed differences in the renal expression of several genes (including Ms4a6a, Ndrg3, Egln1, Cd36, Sema3a, Ugt2b, and Idi21) located in some of the CNVs between SHR and Wistar-Kyoto rats. In F(2) animals derived from an SHRxWistar-Kyoto cross, we also found a significant increase in blood pressure associated with an increase in copy number in the Egln1 gene. Our findings suggest that CNVs may play a role in the susceptibility to hypertension and related traits in the SHR.