Rochu DanielDepartement de Toxicologie; Centre de Recherches du Service de Sante des Armees; BP 87; 38702 La Tronche FrancePhone : +33476636964 Fax : Send E-Mail to Rochu Daniel
Bioscavengers are molecules able to neutralize neurotoxic organophosphorus compounds (OP) before they can reach their biological target. Human butyrylcholinesterase (hBChE) is a natural bioscavenger each molecule of enzyme neutralizing one molecule of OP. The amount of natural enzyme is insufficient to achieve good protection. Thus, different strategies have been envisioned. The most straightforward consists in injecting a large dose of highly purified natural hBChE to increase the amount of bioscavenger in the bloodstream. This proved to be successful for protection against lethal doses of soman and VX but remains expensive. An improved strategy is to regenerate prophylactic cholinesterases (ChE) by administration of reactivators after exposure. But broad-spectrum efficient reactivators are still lacking, especially for inhibited hBChE. Cholinesterase mutants capable of reactivating spontaneously are another option. The G117H hBChE mutant has been a prototype. We present here the Y124H/Y72D mutant of human acetylcholinesterase; its spontaneous reactivation rate after V-agent inhibition is increased up to 110 fold. Catalytic bioscavengers, enzymes capable of hydrolyzing OP, present the best alternative. Mesophilic bacterial phosphotriesterase (PTE) is a candidate with good catalytic efficiency. Its enantioselectivity has been enhanced against the most potent OP isomers by rational design. We show that PEGylation of this enzyme improves its mean residence time in the rat blood stream 24-fold and its bioavailability 120-fold. Immunogenic issues remain to be solved. Human paraoxonase 1 (hPON1) is another promising candidate. However, its main drawback is that its phosphotriesterase activity is highly dependent on its environment. Recent progress has been made using a mammalian chimera of PON1, but we provide here additional data showing that this chimera is biochemically different from hPON1. Besides, the chimera is expected to suffer from immunogenic issues. Thus, we stress that interest for hPON1 must not fade away, and in particular, the 3D structure of the hPON1 eventually in complex with OP has to be solved.
        
Title: Preparation and characterization of methoxy polyethylene glycol-conjugated phosphotriesterase as a potential catalytic bioscavenger against organophosphate poisoning Jun D, Musilova L, Link M, Loiodice M, Nachon F, Rochu D, Renault F, Masson P Ref: Chemico-Biological Interactions, 187:380, 2010 : PubMed
Bioscavengers are considered as promising antidotes against organophosphate poisoning. We focused on a bacterial phosphotriesterase (PTE) expressed in Escherichia coli. The main disadvantage of this non-human catalytic bioscavenger is its relatively short half-life in the organism and strong immunogenicity after repeated administration. Therefore, we prepared different methoxy polyethylene glycol (MPEG)-conjugated recombinant PTE as a potential catalytic bioscavenger with the aim to improve its biological properties. Enzyme was modified with two linear monofunctional MPEG derivatives with reactive aldehyde group of molecular weight 2 kDa and 5 kDa. We optimized reaction conditions (reagent ratios, temperature and duration of modification reaction) and we prepared homogeneous population of fully modified recombinant PTE with molecular weight around 52 kDa and 76 kDa, respectively. Modified PTE was characterized using SDS-PAGE and MALDI-TOF and by determining K(m) and V(max). We also investigated thermal stability of modified enzyme at 37 degrees C. Based on our results, for future in vivo evaluation of pharmacokinetics and pharmacodynamics properties, we selected recombinant PTE modified with 5 kDa MPEG aldehyde for its superior thermal stability.
        
Title: Integrative analytical approach by capillary electrophoresis and kinetics under high pressure optimized for deciphering intrinsic and extrinsic cofactors that modulate activity and stability of human paraoxonase (PON1) Renault F, Carus T, Clery-Barraud C, Elias M, Chabriere E, Masson P, Rochu D Ref: Journal of Chromatography B Analyt Technol Biomed Life Sciences, 878:1346, 2010 : PubMed
Paraoxonase (PON1) is working in vivo in a particular dynamic environment including HDL particles and associated molecules. To decipher the respective and/or concomitant role of the different cofactors involved in this molecular organization, an approach using multiple experimental techniques based on capillary electrophoresis and classical kinetics or kinetics under high pressure was implemented. The effects of calcium and phosphate as protein or plasma cofactor, of human phosphate binding protein (HPBP) as enzyme chaperone, and of a PON1 inhibitor as an active site stabilizer, on the catalytic activities and functional oligomerization of PON1 were scrutinized. PON1 displays two distinct catalytic behaviors, one against esters and lactones, the other against organophosphorus compounds; its functional states and catalytic activities against these substrates are differently modulated by the molecular environment; PON1 exists under several active multimeric forms; the binding of HPBP amends the size of the oligomeric states and exerts a stabilizing effect on the activities of PON1; PON1 functional properties are modulated by HPBP, calcium and phosphate. This integrative approach using several optimized analytical techniques allowed performing comparison of catalytic properties and oligomeric states of functional PON1 in different enzyme preparations. Relevance of these data to understand in vivo physiological PON1 functioning is mandatory.
Organophosphates are the largest class of known insecticides, several of which are potent nerve agents. Consequently, organophosphate-degrading enzymes are of great scientific interest as bioscavengers and biodecontaminants. Recently, a hyperthermophilic phosphotriesterase (known as SsoPox), from the Archaeon Sulfolobus solfataricus, has been isolated and found to possess a very high lactonase activity. Here, we report the three-dimensional structures of SsoPox in the apo form (2.6 A resolution) and in complex with a quorum-sensing lactone mimic at 2.0 A resolution. The structure also reveals an unexpected active site topology, and a unique hydrophobic channel that perfectly accommodates the lactone substrate. Structural and mutagenesis evidence allows us to propose a mechanism for lactone hydrolysis and to refine the catalytic mechanism established for phosphotriesterases. In addition, SsoPox structures permit the correlation of experimental lactonase and phosphotriesterase activities and this strongly suggests lactonase activity as the cognate function of SsoPox. This example demonstrates that promiscuous activities probably constitute a large and efficient reservoir for the creation of novel catalytic activities.
While there is a consensus that human PON1 (paraoxonase-1) has a protective role, its primary biological function remains unclear. A protective role against poisoning by organophosphates [OPs (organophosphorus compounds)] drove earlier works. Clinical interest has recently focused on a protective role of PON1 against vascular diseases. PON1 resides mainly on HDL (high-density lipoprotein) particles, and converging recent works show that both its activities and stability dramatically depend on this versatile and dynamic molecular environment. The discovery that HPBP (human phosphate-binding protein) has a firm tendency to associate with PON1 has steered new directions for characterizing PON1 functional state(s). Storage stability studies provided evidence that HPBP is involved in maintaining physiologically active PON1 conformation(s). Thermal stability studies showed that human PON1 is remarkably thermostable and that its association with HPBP strongly contributes to slowing down the denaturation rate. A hybrid PON1, displaying mutations that stabilized recombinant enzyme expressed in Escherichia coli, was shown to be more thermostable than natural human PON1. Predictably, its stability was unaffected by the presence of HPBP. Synergistic efforts on characterizing natural PON1 and rPON1 (recombinant PON1) provide information for the design of future stable mutants of PON1-based bioscavengers to be used as safe and effective countermeasures to challenge OPs. Maintaining a stable environment for such administrable human rPON1 should, at least, preserve the anti-atherogenic activity of the enzyme.
        
Title: Capillary electrophoresis versus differential scanning calorimetry for the analysis of free enzyme versus enzyme-ligand complexes: in the search of the ligand-free status of cholinesterases Rochu D, Clery-Barraud C, Renault F, Chevalier A, Bon C, Masson P Ref: Electrophoresis, 27:442, 2006 : PubMed
Cholinesterases (ChEs) are highly efficient biocatalysts whose active site is buried in a deep, narrow gorge. The talent of CE to discover inhibitors in the gorge of highly purified preparations has fairly altered the meaning of a ChE ligand-free status. To attempt at a description of this one, we investigated the stability of Bungarus fasciatus acetylcholinesterase (AChE), alone or complexed with different inhibitors. Determination of mid-transition temperature for thermal denaturation, using differential scanning calorimetry (DSC) and CE, provided conflicting results. Discrepancies strongly question the reality of a ligand-free AChE state. DSC allowed estimation of the stability of AChE-ligands complexes, and to rank the stabilizing effect of different inhibitors. CE acted as a detector of hidden ligands, provided that they were charged, reversibly bound, and thus dissociable upon action of electric fields. Then, CE allowed quantification of the stability of ligand-free AChE. CE and DSC providing each fractional and nonredundant information, cautious attention must be paid for actual estimation of the conformational stability of ChEs. Because inhibitors used in purification of ChEs by affinity chromatography are charged, CE remains a leading method to estimate enzyme stability and detect the presence of bound hidden ligands.
        
Title: Contribution of the active-site metal cation to the catalytic activity and to the conformational stability of phosphotriesterase: temperature- and pH-dependence Rochu D, Viguie N, Renault F, Crouzier D, Froment MT, Masson P Ref: Biochemical Journal, 380:627, 2004 : PubMed
Phosphotriesterase (PTE) detoxifies nerve agents and organophosphate pesticides. The two zinc cations of the PTE active centre can be substituted by other transition metal cations without loss of activity. Furthermore, metal-substituted PTEs display differences in catalytic properties. A prerequisite for engineering highly efficient mutants of PTE is to improve their thermostability. Isoelectric focusing, capillary electrophoresis and steady-state kinetics analysis were used to determine the contribution of the active-site cations Zn2+, Co2+ or Cd2+ to both the catalytic activity and the conformational stability of the corresponding PTE isoforms. The three isoforms have different pI values (7.2, 7.5 and 7.1) and showed non-superimposable electrophoretic titration curves. The overall structural alterations, causing changes in functional properties, were found to be related to the nature of the bound cation: ionic radius and ion electronegativity correlate with Km and kcat respectively. In addition, the pH-dependent activity profiles of isoforms were different. The temperature-dependent profiles of activity showed maximum activity at T < or =35 degrees C, followed by an activation phase near 45-48 degrees C and then inactivation which was completed at 60 degrees C. Analysis of thermal denaturation of the PTEs provided evidence that the activation phase resulted from a transient intermediate. Finally, at the optimum activity between pH 8 and 9.4, the thermostability of the different PTEs increased as the pH decreased, and the metal cation modulated stability (Zn2+-, Co2+- and Cd2+-PTE showed different T (m) values of 60.5-67 degrees C, 58-64 degrees C and 53-64 degrees C respectively). Requirements for optimum activity of PTE (displayed by Co2+-PTE) and maximum stability (displayed by Zn2+-PTE) were demonstrated.
        
Title: Capillary zone electrophoresis detects unwanted cholinesterase-bound hidden ligands that alter enzyme conformational stability. Rochu D, Renault F, Bon C, Masson P Ref: Cholinergic Mechanisms, CRC Press, :675, 2004 : PubMed
Title: Detection of unwanted protein-bound ligands by capillary zone electrophoresis: the case of hidden ligands that stabilize cholinesterase conformation Rochu D, Renault F, Masson P Ref: Electrophoresis, 23:930, 2002 : PubMed
Detection, identification and characterization of compounds present in purified proteins and biopharmaceuticals are of central interest. As well as chemical remedies, proteins of pharmacological interest have to exhibit their nakedness to become therapeutic drugs. Cholinesterases (ChE) are enzymes of major importance for detoxification of poisonous esters. Likewise, ChE are characterized by the high catalytic efficiency of an active site positioned at the bottom of a deep gorge. The gorge can be partially or fully occupied by ligands, i.e., substrates and inhibitors that are currently used in affinity chromatography purification steps. Accordingly, a suitable method allowing to analyse the presence of unwanted ligands and its influence on the functional conformation and stability of these enzymes was essential. We have developed CZE approaches for that purpose. The factors causing discrepancies between data for thermal unfolding of ChE by electrophoretic and by calorimetric methods were investigated. The presence of unwanted hidden ligands bound to purified enzymes was first demonstrated. The incidence of these ligands was discussed. Altogether, our results raised several questions concerning the real conformation of the native state of enzymes. Finally, CZE was proved to be a pertinent tool to validate the conformity of purified enzymes to a status of biopharmaceutical.
        
Title: Dual effect of high electric field in capillary electrophoresis study of the conformational stability of Bungarus fasciatus acetylcholinesterase Rochu D, Pernet T, Renault F, Bon C, Masson P Ref: Journal of Chromatography A, 910:347, 2001 : PubMed
The effect of high electric field in capillary zone electrophoresis (CZE) was evaluated for the study of the thermally induced unfolding of Bungarus fasciatus acetylcholinesterase. This monomer enzyme is characterised by two interdependent uncommon structural features, the asymmetrical distribution of charged residues and a relatively low thermal denaturation temperature. Both traits were presumed to interfere in the thermal unfolding of this enzyme as investigated by CZE. This paper analyses the effect of high electric field on the behaviour of the enzyme native state. It is shown that increasing the applied field causes denaturation-like transition of the enzyme at a current power which does not induce excessive Joule heating in the capillary. The susceptibility to electric field of proteins like cholinesterases, with charge distribution anisotropy, large permanent dipole moment and notable molecular flexibility associated with moderate thermal stability, was subsequently discussed.
        
Title: Thermal stability of acetylcholinesterase from Bungarus fasciatus venom as investigated by capillary electrophoresis Rochu D, Georges C, Repiton J, Viguie N, Saliou B, Bon C, Masson P Ref: Biochimica & Biophysica Acta, 1545:216, 2001 : PubMed
Previous studies on the conformation of the monomeric acetylcholinesterase (AChE) from the krait (Bungarus fasciatus) venom showed that the protein possesses a large permanent dipole moment. These studies predicted that thermal irreversible denaturation must occur via partially unfolded states. The thermal stability of Bungarus AChE was determined using capillary electrophoresis (CE) with optimized conditions. Runs performed at convenient temperature scanning rates provided evidence for an irreversible denaturation process according to the Lumry and Eyring model. The mid-transition temperature, T(m), and the effective enthalpy change, DeltaH(m) were determined at different pH. The temperature dependence of the free energy, DeltaG, of Bungarus AChE unfolding was drawn using values of T(m), DeltaH(m) and DeltaC(p) determined by CE. The thermodynamic parameters for the thermal denaturation of the monomeric snake enzyme were compared with those of different dimeric and tetrameric ChEs. It was shown that the changes in the ratio of DeltaH(cal/)DeltaH(vH) and DeltaC(p) reflect the oligomerization state of these proteins. All these results indicate that wild-type monomeric Bungarus AChE is a stable enzyme under standard conditions. However, designed mutants of this enzyme capable of degrading organophosphates have to be engineered to enhance their thermostability.
Human serum paraoxonase (PON1) is a calcium-dependent organophosphatase. To identify residues essential for PON1 activity, we adopted complementary approaches based on chemical modification and site-directed mutagenesis. To detect 45Ca2+ binding to native and chemically modified PON1, we performed nondenaturating gel electrophoresis. The environment of calcium-binding sites was probed using the Ca2+ analogue, terbium. Tb3+ binds to calcium-binding sites as shown by displacement of 45Ca2+ by Tb3+. Binding of Tb3+ is accompanied by a complete loss of enzyme activity. PON1 chemical modification with the Trp-selective reagent, N-bromosuccinimide, and the Asp/Glu-selective, dicyclohexylcarbodiimide, established that Trp and Asp/Glu residues are components of the PON1 active center and calcium-binding sites. Additional evidence for the presence of a Trp residue in the PON1 calcium-binding sites was a characteristic fluorescence emission at 545 nm from the PON1-Tb3+ complex and abolishment of that fluorescence upon modification by N-bromosuccinimide. The importance of aromatic/hydrophobic character of the residue 280 was demonstrated by site-directed mutagenesis: the W280F mutant was fully active while the W280A and W280L mutants had markedly reduced activity. Twelve amino acids among conserved His and Asp/Glu residues were found essential for PON1 arylesterase and organophosphatase activities: H114, H133, H154, H242, H284, D53, D168, D182, D268, D278, E52, and E194. Finally, the cysteines constituting the PON1 disulfide bond (C41 and C352) were essential, but the glycan chains linked to Asn 252 and 323 were not essential for PON1 secretion and activity.
        
Title: Purification, molecular characterization and catalytic properties of a Pseudomonas fluorescens enzyme having cholinesterase-like activity Rochu D, Rothlisberger C, Taupin C, Renault F, Gagnon J, Masson P Ref: Biochimica & Biophysica Acta, 1385:126, 1998 : PubMed
An enzyme with a cholinesterase (ChE) activity, produced by Pseudomonas fluorescens, was purified to homogeneity in a three-step procedure. Analysis by non-denaturing and SDS-PAGE, and by isoelectric focusing, indicated that the enzyme was a monomer of 43 kDa, with a pI of 6.1. The N-terminal sequence, AEPLKAVGAGEGQLDIVAWPGYIEA, showed some similarities with proteins of the ChE family and a strong similarity with a protein from Escherichia coli with unknown structure and function. Cholinesterase activity at pH 7.0 and 25 degreesC was maximum with propionylthiocholine as substrate (kcat,app=670 min-1), followed by acetylthiocholine, and significantly lower with butyrylthiocholine. Catalytic specificity (kcat/Km) was the same for propionylthiocholine and acetylthiocholine, but was two orders of magnitude lower for butyrylthiocholine. Kinetics of thiocholine ester hydrolysis showed inhibition by excess substrate which was ascribed to binding of a second substrate molecule, leading to non-productive ternary complex (Km=35 microM, KSS=0.49 mM with propionylthiocholine). There was low or no reactivity with organophosphates and carbamates. The enzyme inhibited by echothiophate (kII=0.44x102 M-1 min-1) was not reactivated by pralidoxime methiodide. However, the P. fluorescens enzyme had affinity for procainamide and decamethonium, two reversible ChE inhibitors used as affinity chromatography ligand and eluant, respectively. Although similarity of the N-terminal amino acid sequence of the enzyme with an internal sequence of ChEs is weak, its catalytic activity towards thiocholine esters, and its affinity for positively charged ligands supports the contention that this enzyme may belong to the ChE family. However, we cannot rule out that the enzyme belongs to another structural family of proteins having cholinesterase-like properties. The reaction of the enzyme with organophosphates suggests that it is a serine esterase, and currently this enzyme may be termed as having a cholinesterase-like activity.