A series of beta-aminoacyl containing thiazolidine derivatives was synthesized and evaluated for their ability to inhibit DPP-IV. Several thiazolidine derivatives with an acid moiety were found to be potent DPP-IV inhibitors. Among them, compound 2da is the most active in this series with an IC(50) value of 1 nM, and it showed excellent selectivity over DPP-IV related enzymes including DPP-2, DPP-8, and DPP-9. Compound 2da is chemically and metabolically stable, and showed no CYP inhibition, hERG binding or cytotoxicity. Compound 2db, an ester prodrug of 2da, showed good in vivo DPP-IV inhibition after oral administration in rat and dog models.
Compounds with homopiperazine skeleton are designed to find a potent DPP-IV inhibitor without inhibiting CYP. Thus a series of beta-aminoacyl-containing homopiperazine derivatives was synthesized and evaluated. Compounds with acid moiety were found to be potent inhibitors of DPP-IV without inhibiting CYP 3A4. More specifically, compound 7m showed nanomolar activity with no inhibition towards five subtypes of CYPs, was considered as a prototype for further derivatization. Based on its X-ray co-crystal structure with human DPP-IV, we identified compounds 7s and 7t which showed good in vitro activity, no CYP inhibition, and good selectivity.
A series of pyrazoline derivatives with beta-amino acyl group were synthesized and evaluated for their ability to inhibit dipeptidyl peptidase IV. Several pyrazoline derivatives exhibited submicromolar inhibitory activities against DPP-IV. X-ray co-crystal structure of initial hit compound 1h was determined. Among this series, carboxylic acid substituted pyrazoline derivative 2u was the most active and greatly decreased the inhibitory activity toward CYP3A4 enzyme.
Inhibitors of dipeptidyl peptidase IV (DPP-IV) have been shown to be effective treatments for type 2 diabetes. A series of beta-aminoacyl-containing cyclic hydrazine derivatives were synthesized and evaluated as DPP-IV inhibitors. One member of this series, (R)-3-amino-1-(2-benzoyl-1,2-diazepan-1-yl)-4-(2,4,5-trifluorophenyl)butan-1-one (10f), showed potent in vitro activity, good selectivity and in vivo efficacy in mouse models. Also, the binding mode of compound 10f was determined by X-ray crystallography.
In the continuation of efforts to modify the structure of our novel DP-IV inhibitors, a series of pyrazolidine derivatives with heteroaryl urea was synthesized and evaluated for their ability to inhibit dipeptidyl peptidase IV (DP-IV).
Inhibition of dipeptidyl peptidase IV (DPP-IV) activity has been reported to improve nutrient-stimulated insulin secretion through the stabilization of glucagon-like peptide (GLP-1). In the present study, we identified novel DPP-IV inhibitors of pyrazolidine derivatives (Compounds 1 and 2) and characterized their biological effects in vitro and in vivo. Compound 1, an isoleucine pyrazolidide with a phenyl urea group, inhibited rat plasma DPP-IV, porcine kidney DPP-IV, as well as human Caco-2 DPP-IV with IC(50) values of 1.70, 2.26, and 2.02 microM, respectively. Because of the poor pharmacokinetic properties of Compound 1, further optimization was carried out, leading to the discovery of Compound 2, which had similar in vitro activities. Compound 2 acted as a selective and competitive inhibitor of DPP-IV. MALDI-TOF mass spectrometric analysis proved that the compound (20 microM) effectively blocked the degradation of active GLP-1 peptide by 61%. Although similar in in vitro potency, marked improvement of in vivo efficacy and pharmacokinetic properties was seen with Compound 2. Oral administration of Compound 2 resulted in potent and rapid inhibition of circulating DPP-IV in C57BL/6J mice, with ED(50) values of 26mg/kg (s.c.) and 42mg/kg (p.o.). In addition, this compound improved glucose tolerance in ob/ob mice, as determined by an oral glucose tolerance test (OGTT). These results indicate that Compound 2 is a potent and selective DPP-IV inhibitor with oral anti-hyperglycemic activity in vivo.
        
Title: KR-62436, 6-{2-[2-(5-cyano-4,5-dihydropyrazol-1-yl)-2-oxoethylamino]ethylamino}nicotinonitr ile, is a novel dipeptidyl peptidase-IV (DPP-IV) inhibitor with anti-hyperglycemic activity Kim KR, Rhee SD, Kim HY, Jung WH, Yang SD, Kim SS, Ahn JH, Cheon HG Ref: European Journal of Pharmacology, 518:63, 2005 : PubMed
Dipeptidyl peptidase-IV (DPP-IV) is involved in the inactivation of glucagon-like peptide-1 (GLP-1), a potent insulinotropic peptide. Thus, DPP-IV inhibition can be an effective approach to treat type 2 diabetes mellitus by potentiating insulin secretion. This study describes the biological effects of a new DPP-IV inhibitor, KR-62436 (6-{2-[2-(5-cyano-4,5-dihydropyrazol-1-yl)-2-oxoethylamino]ethylamino}nicotinonit rile) in vitro and in vivo. KR-62436 inhibited rat plasma DPP-IV, porcine kidney DPP-IV as well as human DPP-IV (Caco-2) with IC50 values of 0.78, 0.49, 0.14 microM, respectively. In addition, the compound (10 microM) almost completely inhibited DPP-IV-mediated degradation of GLP-1 in vitro. KR-62436 inhibited the enzyme in a competitive manner, and exhibited selectivity against several proteases including proline-specific proteases. In vivo efficacy of the compound was examined by using normal C57BL/6J mice and ob/ob mice, a type 2 diabetes animal model. Administration of KR-62436 to C57BL/6J mice either orally or subcutaneously resulted in the suppression of plasma DPP-IV activity, increase in intact GLP-1 and insulin levels in plasma. Furthermore, the plasma glucose concentrations during oral glucose tolerance test (OGTT) were reduced upon oral administration of KR-62436. This study demonstrates that KR-62436 could be a good lead compound for further development as a new anti-diabetic agent.