Title: Three-dimensional structure of a complex of galanthamine (Nivalin) with acetylcholinesterase from Torpedo californica: implications for the design of new anti-Alzheimer drugs Bartolucci C, Perola E, Pilger C, Fels G, Lamba D Ref: Proteins, 42:182, 2001 : PubMed
The 3D structure of a complex of the anti-Alzheimer drug galanthamine with Torpedo californica acetylcholinesterase is reported. Galanthamine, a tertiary alkaloid extracted from several species of Amarylidacae, is so far the only drug that shows a dual activity, being both an acetylcholinesterase inhibitor and an allosteric potentiator of the nicotinic response induced by acetylcholine and competitive agonists. The X-ray structure, at 2.5A resolution, shows an unexpected orientation of the ligand within the active site, as well as unusual protein-ligand interactions. The inhibitor binds at the base of the active site gorge, interacting with both the acyl-binding pocket and the principal quaternary ammonium-binding site. However, the tertiary amine group of galanthamine does not directly interact with Trp84. A docking study using the program AUTODOCK correctly predicts the orientation of galanthamine in the active site. The docked lowest-energy structure has a root mean square deviation of 0.5A with respect to the corresponding crystal structure of the complex. The observed binding mode explains the affinities of a series of structural analogs of galanthamine and provides a rational basis for structure-based drug design of synthetic derivatives with improved pharmacological properties. Proteins 2001;42:182-191.
        
Title: Accurate prediction of the bound conformation of galanthamine in the active site of Torpedo californica acetylcholinesterase using molecular docking Pilger C, Bartolucci C, Lamba D, Tropsha A, Fels G Ref: J Mol Graph Model, 19:288, 2001 : PubMed
The alkaloid (-)-galanthamine is known to produce significant improvement of cognitive performances in patients with the Alzheimer's disease. Its mechanism of action involves competitive and reversible inhibition of acetylcholinesterase (AChE). Herein, we correctly predict the orientation and conformation of the galanthamine molecule in the active site of AChE from Torpedo californica (TcAChE) using a combination of rigid docking and flexible geometry optimization with a molecular mechanics force field. The quality of the predicted model is remarkable, as indicated by the value of the RMS deviation of approximately 0.5A when compared with the crystal structure of the TcAChE-galanthamine complex. A molecular model of the complex between TcAChE and a galanthamine derivative, SPH1107, with a long chain substituent on the nitrogen has been generated as well. The side chain of this ligand is predicted to extend along the enzyme active site gorge from the anionic subsite, at the bottom, to the peripheral anionic site, at the top. The docking procedure described in this paper can be applied to produce models of ligand-receptor complexes for AChE and other macromolecular targets of drug design.