Nicolet YvainLaboratoire de Cristallographie et Cristallogenese des Proteines, Institut de Biologie Structurale J.P. Ebel, CEA, CNRS, Universite Joseph Fourier, 41 rue J. Horowitz, 38027 Grenoble FrancePhone : Fax :
Title: Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase Nachon F, Carletti E, Ronco C, Trovaslet M, Nicolet Y, Jean L, Renard PY Ref: Biochemical Journal, 453:393, 2013 : PubMed
The multifunctional nature of Alzheimer's disease calls for MTDLs (multitarget-directed ligands) to act on different components of the pathology, like the cholinergic dysfunction and amyloid aggregation. Such MTDLs are usually on the basis of cholinesterase inhibitors (e.g. tacrine or huprine) coupled with another active molecule aimed at a different target. To aid in the design of these MTDLs, we report the crystal structures of hAChE (human acetylcholinesterase) in complex with FAS-2 (fasciculin 2) and a hydroxylated derivative of huprine (huprine W), and of hBChE (human butyrylcholinesterase) in complex with tacrine. Huprine W in hAChE and tacrine in hBChE reside in strikingly similar positions highlighting the conservation of key interactions, namely, pi-pi/cation-pi interactions with Trp86 (Trp82), and hydrogen bonding with the main chain carbonyl of the catalytic histidine residue. Huprine W forms additional interactions with hAChE, which explains its superior affinity: the isoquinoline moiety is associated with a group of aromatic residues (Tyr337, Phe338 and Phe295 not present in hBChE) in addition to Trp86; the hydroxyl group is hydrogen bonded to both the catalytic serine residue and residues in the oxyanion hole; and the chlorine substituent is nested in a hydrophobic pocket interacting strongly with Trp439. There is no pocket in hBChE that is able to accommodate the chlorine substituent.
        
Title: X-ray crystallographic snapshots of reaction intermediates in the G117H mutant of human butyrylcholinesterase, a nerve agent target engineered into a catalytic bioscavenger Nachon F, Carletti E, Wandhammer M, Nicolet Y, Schopfer LM, Masson P, Lockridge O Ref: Biochemical Journal, 434:73, 2011 : PubMed
OPs (organophosphylates) exert their acute toxicity through inhibition of acetylcholinesterase, by phosphylation of the catalytic serine residue. Engineering of human butyrylcholinesterase, by substitution of a histidine residue for the glycine residue at position 117, led to the creation of OP hydrolase activity. However, the lack of structural information and poor understanding of the hydrolytic mechanism of the G117H mutant has hampered further improvements in the catalytic activity. We have solved the crystallographic structure of the G117H mutant with a variety of ligands in its active site. A sulfate anion bound to the active site suggested the positioning for an OP prior to phosphylation. A fluoride anion was found in the active site when NaF was added to the crystallization buffer. In the fluoride complex, the imidazole ring from the His117 residue was substantially shifted, adopting a relaxed conformation probably close to that of the unliganded mutant enzyme. Additional X-ray structures were obtained from the transient covalent adducts formed upon reaction of the G117H mutant with the OPs echothiophate and VX [ethyl ({2-[bis(propan-2-yl)amino]ethyl}sulfanyl](methyl)phosphinate]. The position of the His117 residue shifted in response to the introduction of these adducts, overlaying the phosphylserine residue. These structural data suggest that the dephosphylation mechanism involves either a substantial conformational change of the His117 residue or an adjacent nucleophilic substitution by water.
Igs offer a versatile template for combinatorial and rational design approaches to the de novo creation of catalytically active proteins. We have used a covalent capture selection strategy to identify biocatalysts from within a human semisynthetic antibody variable fragment library that uses a nucleophilic mechanism. Specific phosphonylation at a single tyrosine within the variable light-chain framework was confirmed in a recombinant IgG construct. High-resolution crystallographic structures of unmodified and phosphonylated Fabs display a 15-A-deep two-chamber cavity at the interface of variable light (V(L)) and variable heavy (V(H)) fragments having a nucleophilic tyrosine at the base of the site. The depth and structure of the pocket are atypical of antibodies in general but can be compared qualitatively with the catalytic site of cholinesterases. A structurally disordered heavy chain complementary determining region 3 loop, constituting a wall of the cleft, is stabilized after covalent modification by hydrogen bonding to the phosphonate tropinol moiety. These features and presteady state kinetics analysis indicate that an induced fit mechanism operates in this reaction. Mutations of residues located in this stabilized loop do not interfere with direct contacts to the organophosphate ligand but can interrogate second shell interactions, because the H3 loop has a conformation adjusted for binding. Kinetic and thermodynamic parameters along with computational docking support the active site model, including plasticity and simple catalytic components. Although relatively uncomplicated, this catalytic machinery displays both stereo- and chemical selectivity. The organophosphate pesticide paraoxon is hydrolyzed by covalent catalysis with rate-limiting dephosphorylation. This reactibody is, therefore, a kinetically selected protein template that has enzyme-like catalytic attributes.
Nerve agents are chiral organophosphate compounds (OPs) that exert their acute toxicity by phosphorylating the catalytic serine of acetylcholinesterase (AChE). The inhibited cholinesterases can be reactivated using oximes, but a spontaneous time-dependent process called aging alters the adduct, leading to resistance toward oxime reactivation. Human butyrylcholinesterase (BChE) functions as a bioscavenger, protecting the cholinergic system against OPs. The stereoselectivity of BChE is an important parameter for its efficiency at scavenging the most toxic OPs enantiomer for AChE. Crystals of BChE inhibited in solution or in cristallo with racemic V-agents (VX, Russian VX, and Chinese VX) systematically show the formation of the P(S) adduct. In this configuration, no catalysis of aging seems possible as confirmed by the three-dimensional structures of the three conjugates incubated over a period exceeding a week. Crystals of BChE soaked in optically pure VX(R)-(+) and VX(S)-(-) solutions lead to the formation of the P(S) and P(R) adduct, respectively. These structural data support an in-line phosphonylation mechanism. Additionally, they show that BChE reacts with VX(R)-(+) in the presence of racemic mixture of V-agents, at odds with earlier kinetic results showing a moderate higher inhibition rate for VX(S)-(-). These combined results suggest that the simultaneous presence of both enantiomers alters the enzyme stereoselectivity. In summary, the three-dimensional data show that BChE reacts preferentially with P(R) enantiomer of V-agents and does not age, in complete contrast to AChE, which is selectively inhibited by the P(S) enantiomer and ages.
hBChE [human BChE (butyrylcholinesterase)] naturally scavenges OPs (organophosphates). This bioscavenger is currently in Clinical Phase I for pretreatment of OP intoxication. Phosphylated ChEs (cholinesterases) can undergo a spontaneous time-dependent process called 'aging' during which the conjugate is dealkylated, leading to creation of an enzyme that cannot be reactivated. hBChE inhibited by phosphoramidates such as tabun displays a peculiar resistance to oxime-mediated reactivation. We investigated the basis of oxime resistance of phosphoramidyl-BChE conjugates by determining the kinetics of inhibition, reactivation (obidoxime {1,1'-(oxybis-methylene) bis[4-(hydroxyimino) methyl] pyridinium dichloride}, TMB-4(Trimedoxime) [1,3-trimethylene-bis(4-hydroxyiminomethylpyridinium) dibromide], HL 7 {1-[[[4-(aminocarbonyl) pyridinio]methoxy]methyl]-2,4-bis-[(hydroxyimino)methyl] pyridinium dimethanesulfonate)}, HI-6 {1-[[[4-(aminocarbonyl) pyridinio] methoxy] methyl]-2-[(hydroxyimino)methyl]pyridinium dichloride monohydrate} and aging, and the crystal structures of hBChE inhibited by different N-monoalkyl and N,N-dialkyl tabun analogues. The refined structures of aged hBChE conjugates show that aging proceeds through O-dealkylation of the P(R) enantiomer of N,N-diethyl and N-propyl analogues, with subsequent formation of a salt bridge preventing reactivation, similarly to a previous observation made on tabun-ChE conjugates. Interestingly, the N-methyl analogue projects its amino group towards the choline-binding pocket, so that aging proceeds through deamination. This orientation results from a preference of hBChE's acyl-binding pocket for larger than 2-atoms linear substituents. The correlation between the inhibitory potency and the N-monoalkyl chain length is related to increasingly optimized interactions with the acyl-binding pocket as shown by the X-ray structures. These kinetics and X-ray data lead to a structure-activity relationship that highlights steric and electronic effects of the amino substituent of phosphoramidate. This study provides the structural basis to design new oximes capable of reactivating phosphoramidyl-hBChE conjugates after intoxication, notably when hBChE is used as pretreatment, or to design BChE-based catalytic bioscavengers.
Human butyrylcholinesterase (hBChE) hydrolyzes or scavenges a wide range of toxic esters, including heroin, cocaine, carbamate pesticides, organophosphorus pesticides, and nerve agents. Organophosphates (OPs) exert their acute toxicity through inhibition of acetylcholinesterase (AChE) by phosphorylation of the catalytic serine. Phosphylated cholinesterase (ChE) can undergo a spontaneous, time-dependent process called "aging", during which the OP-ChE conjugate is dealkylated. This leads to irreversible inhibition of the enzyme. The inhibition of ChEs by tabun and the subsequent aging reaction are of particular interest, because tabun-ChE conjugates display an extraordinary resistance toward most current oxime reactivators. We investigated the structural basis of oxime resistance for phosphoramidated ChE conjugates by determining the crystal structures of the non-aged and aged forms of hBChE inhibited by tabun, and by updating the refinement of non-aged and aged tabun-inhibited mouse AChE (mAChE). Structures for non-aged and aged tabun-hBChE were refined to 2.3 and 2.1 A, respectively. The refined structures of aged ChE conjugates clearly show that the aging reaction proceeds through O-dealkylation of the P(R) enantiomer of tabun. After dealkylation, the negatively charged oxygen forms a strong salt bridge with protonated His438N epsilon2 that prevents reactivation. Mass spectrometric analysis of the aged tabun-inhibited hBChE showed that both the dimethylamine and ethoxy side chains were missing from the phosphorus. Loss of the ethoxy is consistent with the crystallography results. Loss of the dimethylamine is consistent with acid-catalyzed deamidation during the preparation of the aged adduct for mass spectrometry. The reported 3D data will help in the design of new oximes capable of reactivating tabun-ChE conjugates.
        
Title: [Butyrylcholinesterase: 3D structure, catalytic mechanisms] Nachon F, Nicolet Y, Masson P Ref: Ann Pharm Fr, 63:194, 2005 : PubMed
Cholinesterases are the main targets of organophosphorus compounds. Although progresses in prophylaxis and treatment of nerve agent poisoning have been achieved in the past twenty years, pharmacological protection and emergency treatment remain imperfect. All classical pharmacological ways have been explored and, the current medical counter-measure arsenal is generally not expected to change much. However, the emergence of the catalytic bioscavenger concept has aroused new hope. In addition, resolution of the three-dimensional structure of human butyrylcholinesterase (BChE) answered some fundamental issues in medical defense research: 1) a better description of cholinesterase catalytic mechanisms (substrate hydrolysis, inhibition by organophosphorus); 2) aging mechanism of phosphylated cholinesterases caused by the dealkylation of branched organophosphorous moiety; 3) reasoned site-directed mutagenesis of human BChE with the aim of making operational mutants capable of detoxifying organophosphorus substrates.
        
Title: The reactant state for substrate-activated turnover of acetylthiocholine by butyrylcholinesterase is a tetrahedral intermediate Tormos JR, Wiley KL, Seravalli J, Nachon F, Masson P, Nicolet Y, Quinn DM Ref: Journal of the American Chemical Society, 127:14538, 2005 : PubMed
Secondary beta-deuterium kinetic isotope effects have been measured as a function of substrate concentration for recombinant human butyrylcholinesterase-catalyzed hydrolysis of acetyl-L3-thiocholine (L = 1H or 2H). The isotope effect on V/K is inverse, D3V/K = 0.93 +/- 0.03, which is consistent with conversion of the sp2 hybridized carbonyl carbon of the scissile ester bond of the E + A reactant state to a quasi-tetrahedral structure in the acylation transition state. In contrast, the isotope effect on Vmax under conditions of substrate activation is markedly normal, D3(betaVmax) = 1.29 +/- 0.06, an observation that is consistent with accumulation of a tetrahedral intermediate as the reactant state for catalytic turnover. Generally, tetrahedral intermediates for nonenzymatic ester hydrolyses are high-energy steady-state intermediates. Apparently, butyrylcholinesterase displays an unusual ability to stabilize such intermediates. Hence, the catalytic power of cholinesterases can largely be understood in terms of their ability to stabilize tetrahedral intermediates in the multistep reaction mechanism.
Title: Poster (93) How do the crystal structures of human butyrylcholinesterase compare to torpedo californica acetylcholinesterases structures? Nachon F, Nicolet Y, Masson P, Lockridge O, Fontecilla-Camps JC Ref: In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects, (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina:369, 2004 : PubMed
Title: Poster (49) Crystallographic basis for substrate/product exchange in cholinesterases. Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nachon F Ref: In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects, (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina:347, 2004 : PubMed
The photoregulation of the catalytic activity of butyrylcholinesterase (BChE) was investigated by treating the enzyme with a newly developed carbamylating reagent, N-methyl-N-(2-nitrophenyl)carbamoyl chloride, which has proved to be an efficient photoremovable alcohol-protecting group. BChE was efficiently inhibited in a time- and concentration-dependent manner, and the enzyme could be protected against inhibition by active-site-specific ligands (that is, tacrine). The inactivation kinetics showed a biphasic character, which can be analyzed as the result of the existence of two conformational states in solution. Pseudo-irreversible inactivation of BChE, which results from catalytic serine carbamylation, was suggested by recovery of the enzyme activity after dilution and was demonstrated by X-ray crystallography. Remarkably, the 3D structure of the carbamylated BChE conjugate showed a nonambiguous carbamylation of the catalytic serine residue as the only chemical modification on the protein. The photoreversibility of the enzyme inactivation was analyzed by irradiating the inactivated enzyme at 365 nm and was shown to reach completion in some conditions. The efficient and specific "caging" of BChE, together with the availability of carbamylated BChE crystals, will offer a unique possibility to study the catalytic properties of this enzyme by kinetic crystallography after cryophotolytic uncaging of the enzyme conjugate crystals.
Cholinesterases are among the most efficient enzymes known. They are divided into two groups: acetylcholinesterase, involved in the hydrolysis of the neurotransmitter acetylcholine, and butyrylcholinesterase of unknown function. Several crystal structures of the former have shown that the active site is located at the bottom of a deep and narrow gorge, raising the question of how substrate and products enter and leave. Human butyrylcholinesterase (BChE) has attracted attention because it can hydrolyze toxic esters such as cocaine or scavenge organophosphorus pesticides and nerve agents. Here we report the crystal structures of several recombinant truncated human BChE complexes and conjugates and provide a description for mechanistically relevant non-productive substrate and product binding. As expected, the structure of BChE is similar to a previously published theoretical model of this enzyme and to the structure of Torpedo acetylcholinesterase. The main difference between the experimentally determined BChE structure and its model is found at the acyl binding pocket that is significantly bigger than expected. An electron density peak close to the catalytic Ser(198) has been modeled as bound butyrate.
        
Title: Engineering of a monomeric and low-glycosylated form of human butyrylcholinesterase: expression, purification, characterization and crystallization Nachon F, Nicolet Y, Viguie N, Masson P, Fontecilla-Camps JC, Lockridge O Ref: European Journal of Biochemistry, 269:630, 2002 : PubMed
Human butyrylcholinesterase (BChE; EC 3.1.1.8) is of particular interest because it hydrolyzes or scavenges a wide range of toxic compounds including cocaine, organophosphorus pesticides and nerve agents. The relative contribution of each N-linked glycan for the solubility, the stability and the secretion of the enzyme was investigated. A recombinant monomeric BChE lacking four out of nine N-glycosylation sites and the C-terminal oligomerization domain was stably expressed as a monomer in CHO cells. The purified recombinant BChE showed catalytic properties similar to those of the native enzyme. Tetragonal crystals suitable for X-ray crystallography studies were obtained; they were improved by recrystallization and found to diffract to 2.0 A resolution using synchrotron radiation. The crystals belong to the tetragonal space group I422 with unit cell dimensions a = b = 154.7 A, c = 124.9 A, giving a Vm of 2.73 A3 per Da (estimated 60% solvent) for a single molecule of recombinant BChE in the asymmetric unit. The crystal structure of butyrylcholinesterase will help elucidate unsolved issues concerning cholinesterase mechanisms in general.