Multi-target drug discovery is one of the most active fields in the search for new drugs against Alzheimer's disease (AD). This is because the complexity of AD pathological network might be adequately tackled by multi-target-directed ligands (MTDLs) aimed at modulating simultaneously multiple targets of such a network. In a continuation of our efforts to develop MTDLs for AD, we have been focusing on the molecular hybridization of the acetylcholinesterase inhibitor tacrine with the aim of expanding its anti-AD profile. Herein, we manipulated the structure of a previously developed tacrine-quinone hybrid (1). We designed and synthesized a novel set of MTDLs (2-6) by replacing the naphthoquinone scaffold of 1 with that of 2,5,8-quinolinetrione. The most interesting hybrid 3 inhibited cholinesterase enzymes at nanomolar concentrations. In addition, 3 exerted antioxidant effects in menadione-induced oxidative stress of SH-SY5Y cells. Importantly, 3 also showed low hepatotoxicity and good anti-amyloid aggregation properties. Remarkably, we uncovered the potential of the quinolinetrione scaffold, as a novel anti-amyloid aggregation and antioxidant motif to be used in further anti-AD MTDL drug discovery endeavors.
With innumerable clinical failures of target-specific drug candidates for multifactorial diseases, such as Alzheimer's disease (AD), which remains inefficiently treated, the advent of multitarget drug discovery has brought a new breath of hope. Here, we disclose a class of 6-chlorotacrine (huprine)-TPPU hybrids as dual inhibitors of the enzymes soluble epoxide hydrolase (sEH) and acetylcholinesterase (AChE), a multitarget profile to provide cumulative effects against neuroinflammation and memory impairment. Computational studies confirmed the gorge-wide occupancy of both enzymes, from the main site to a secondary site, including a so far non-described AChE cryptic pocket. The lead compound displayed in vitro dual nanomolar potencies, adequate brain permeability, aqueous solubility, human microsomal stability, lack of neurotoxicity, and it rescued memory, synaptic plasticity, and neuroinflammation in an AD mouse model, after low dose chronic oral administration.
In the last years, the connection between the endocannabinoid system (eCS) and neuroprotection has been discovered, and evidence indicates that eCS signaling is involved in the regulation of cognitive processes and in the pathophysiology of Alzheimer's disease (AD). Accordingly, pharmacotherapy targeting eCS could represent a valuable contribution in fighting a multifaceted disease such as AD, opening a new perspective for the development of active agents with multitarget potential. In this paper, a series of coumarin-based carbamic and amide derivatives were designed and synthesized as multipotent compounds acting on cholinergic system and eCS-related targets. Indeed, they were tested with appropriate enzymatic assays on acetyl and butyryl-cholinesterases and on fatty acid amide hydrolase (FAAH), and also evaluated as cannabinoid receptor (CB1 and CB2) ligands. Moreover, their ability to reduce the self-aggregation of beta amyloid protein (Abeta(42)) was assessed. Compounds 2 and 3, bearing a carbamate function, emerged as promising inhibitors of hAChE, hBuChE, FAAH and Abeta(42) self-aggregation, albeit with moderate potencies, while the amide 6 also appears a promising CB1/CB2 receptors ligand. These data prove for the new compounds an encouraging multitarget profile, deserving further evaluation.
A combination of flash chromatography, solid phase extraction, high-performance liquid chromatography, and in vitro bioassays was used to isolate phytocomponents endowed with anticholinesterase activity in extract from Phyllanthus muellarianus. Phytocomponents responsible for the anti-cholinesterase activity of subfractions PMF1 and PMF4 were identified and re-assayed to confirm their activity. Magnoflorine was identified as an active phytocomponent from PMF1 while nitidine was isolated from PMF4. Magnoflorine was shown to be a selective inhibitor of human butyrylcholinesterase-hBChE (IC(50) = 131 +/- 9 microM and IC(50) = 1120 +/- 83 microM, for hBuChE and human acetylcholinesterase-hAChE, respectively), while nitidine showed comparable inhibitory potencies against both enzymes (IC(50) = 6.68 +/- 0.13 microM and IC(50) = 5.31 +/- 0.50 microM, for hBChE and hAChE, respectively). When compared with the commercial anti-Alzheimer drug galanthamine, nitidine was as potent as galanthamine against hAChE and one order of magnitude more potent against hBuChE. Furthermore, nitidine also showed significant, although weak, antiaggregating activity towards amyloid-beta self-aggregation.
Starting from six potential hits identified in a virtual screening campaign directed to a cryptic pocket of BACE-1, at the edge of the catalytic cleft, we have synthesized and evaluated six hybrid compounds, designed to simultaneously reach BACE-1 secondary and catalytic sites and to exert additional activities of interest for Alzheimer's disease (AD). We have identified a lead compound with potent in vitro activity towards human BACE-1 and cholinesterases, moderate Abeta42 and tau antiaggregating activity, and brain permeability, which is nontoxic in neuronal cells and zebrafish embryos at concentrations above those required for the in vitro activities. This compound completely restored short- and long-term memory in a mouse model of AD (SAMP8) relative to healthy control strain SAMR1, shifted APP processing towards the non-amyloidogenic pathway, reduced tau phosphorylation, and increased the levels of synaptic proteins PSD95 and synaptophysin, thereby emerging as a promising disease-modifying, cognition-enhancing anti-AD lead.
As part of our efforts to develop sustainable drugs for Alzheimer's disease (AD), we have been focusing on the inexpensive and largely available cashew nut shell liquid (CNSL) as a starting material for the identification of new acetylcholinesterase (AChE) inhibitors. Herein, we decided to investigate whether cardanol, a phenolic CNSL component, could serve as a scaffold for improved compounds with concomitant anti-amyloid and antioxidant activities. Ten new derivatives, carrying the intact phenolic function and an aminomethyl functionality, were synthesized and first tested for their inhibitory potencies towards AChE and butyrylcholinesterase (BChE). 5 and 11 were found to inhibit human BChE at a single-digit micromolar concentration. Transmission electron microscopy revealed the potential of five derivatives to modulate Abeta aggregation, including 5 and 11. In HORAC assays, 5 and 11 performed similarly to standard antioxidant ferulic acid as hydroxyl scavenging agents. Furthermore, in in vitro studies in neuronal cell cultures, 5 and 11 were found to effectively inhibit reactive oxygen species production at a 10 microM concentration. They also showed a favorable initial ADME/Tox profile. Overall, these results suggest that CNSL is a promising raw material for the development of potential disease-modifying treatments for AD.
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cholinergic dysfunction, provoking memory loss and cognitive dysfunction in elderly patients. The cholinergic hypothesis provided over the years with molecular targets for developing palliative treatments for AD, acting on the cholinergic system, namely, acetylcholinesterase and alpha7 nicotinic acetylcholine receptor (alpha7 nAChR). In our synthetic work, we used "click-chemistry" to synthesize two Multi Target Directed Ligands (MTDLs) MB105 and MB118 carrying tacrine and quinuclidine scaffolds which are known for their anticholinesterase and alpha7 nicotinic acetylcholine receptor agonist activities, respectively. Both, MB105 and MB118, inhibit human acetylcholinesterase and human butyrylcholinesterase in the nanomolar range. Electrophysiological recordings on Xenopus laevis oocytes expressing human alpha7 nAChR showed that MB105 and MB118 acted as partial agonists of the referred nicotinic receptor, albeit, with different potencies despite their similar structure. The different substitution at C-3 on the 2,3-disubtituted quinuclidine scaffold may account for the significantly lower potency of MB118 compared to MB105. Electrophysiological recordings showed that the tacrine precursor MB320 behaved as a competitive antagonist of human alpha7 nAChR, in the micromolar range, while the quinuclidine synthetic precursor MB099 acted as a partial agonist. Taken all together, MB105 behaved as a partial agonist of alpha7 nAChR at concentrations where it completely inhibited human acetylcholinesterase activity paving the way for the design of novel MTDLs for palliative treatment of AD.
Despite the constant progress in the understanding of the etiopathogenesis of Alzheimer's disease (AD) over the last 50 years, just four long-standing drugs are currently used for AD therapy. This article reviews the analytical methodologies developed and applied in the last five years to address the early-stage tasks of the AD drug discovery process: the fast selection of active compounds (hits) and the comprehension of the ligand binding mechanism of the compound chosen to be the lead in the forthcoming development. The reviewed analytical methodologies face the most investigated pharmacological protein targets (amyloids, secretases, kinases, cholinesterases) and specific receptor- and enzyme-mediated effects in neurotransmission, neuroprotection and neurodegeneration. Some of these methodologies are noteworthy for their use in middle/high-throughput screening campaigns during hit selection (e.g. surface plasmon resonance biosensing, fluorescence resonance energy transfer assays), whereas some others (circular dichroism and nuclear magnetic resonance spectroscopies, ion mobility-mass spectrometry) can provide in-depth information about the structure, conformation and ligand binding properties of target proteins.
To address the multifactorial nature of Alzheimer's Disease (AD), a multi-target-directed ligand approach was herein developed. As a follow-up of our previous studies, a small library of newly designed 2-arylbenzofuran derivatives was evaluated towards cholinesterases and cannabinoid receptors. The two most promising compounds, 8 and 10, were then assessed for their neuroprotective activity and for their ability to modulate the microglial phenotype. Compound 8 emerged as able to fight AD from several directions: it restored the cholinergic system by inhibiting butyrylcholinesterase, showed neuroprotective activity against Abeta1-42 oligomers, was a potent and selective CB2 ligand and had immunomodulatory effects, switching microglia from the pro-inflammatory M1 to the neuroprotective M2 phenotype. Derivative 10 was a potent CB2 inverse agonist with promising immunomodulatory properties and could be considered as a tool for investigating the role of CB2 receptors and for developing potential immunomodulating drugs addressing the endocannabinoid system.
Both cholinesterases (AChE and BChE) and kinases, such as GSK-3alpha/beta, are associated with the pathology of Alzheimer's disease. Two scaffolds, targeting AChE (tacrine) and GSK-3alpha/beta (valmerin) simultaneously, were assembled, using copper(I)-catalysed azide alkyne cycloaddition (CuAAC), to generate a new series of multifunctional ligands. A series of eight multi-target directed ligands (MTDLs) was synthesized and evaluated in vitro and in cell cultures. Molecular docking studies, together with the crystal structures of three MTDL/TcAChE complexes, with three tacrine-valmerin hybrids allowed designing an appropriate linker containing a 1,2,3-triazole moiety whose incorporation preserved, and even increased, the original inhibitory potencies of the two selected pharmacophores toward the two targets. Most of the new derivatives exhibited nanomolar affinity for both targets, and the most potent compound of the series displayed inhibitory potencies of 9.5nM for human acetylcholinesterase (hAChE) and 7nM for GSK-3alpha/beta. These novel dual MTDLs may serve as suitable leads for further development, since, in the micromolar range, they exhibited low cytotoxicity on a panel of representative human cell lines including the human neuroblastoma cell line SH-SY5Y. Moreover, these tacrine-valmerin hybrids displayed a good ability to penetrate the blood-brain barrier (BBB) without interacting with efflux pumps such as P-gp.
We have designed and synthesized a series of 14 hybrid molecules out of the cholinesterase (ChE) inhibitor tacrine and a benzimidazole-based human cannabinoid receptor subtype 2 (hCB2R) agonist and investigated them in vitro and in vivo. The compounds are potent ChE inhibitors, and for the most promising hybrids, the mechanism of human acetylcholinesterase (hAChE) inhibition as well as their ability to interfere with AChE-induced aggregation of beta-amyloid (Abeta), and Abeta self-aggregation was assessed. All hybrids were evaluated for affinity and selectivity for hCB1R and hCB2R. To ensure that the hybrids retained their agonist character, the expression of cAMP-regulated genes was quantified, and potency and efficacy were determined. Additionally, the effects of the hybrids on microglia activation and neuroprotection on HT-22 cells were investigated. The most promising in vitro hybrids showed pronounced neuroprotection in an Alzheimer's mouse model at low dosage (0.1 mg/kg, i.p.), lacking hepatotoxicity even at high dose (3 mg/kg, i.p.).
INTRODUCTION: Butyrylcholinesterase (BuChE) has obtained a renewed interest as therapeutic target in Alzheimer's disease (AD), when changes in BuChE activity and expression along disease progression were highlighted as well as correlation between BuChE levels and cognitive function. Areas covered: During the last eight years, fourteen patents on BuChE inhibitors (BuChEI) have been submitted. Only three of them relate to BuChE selective inhibitors, while four of them focus on multitarget inhibitors which address different key pathological factors other than BuChE. Two patents report on non-selective acetylcholinesterase (AChE)/BuChE inhibitors, while four patents deal with natural compounds and their derivatives. One patent relates to antitoxic agents to treat exposure to ChEI pesticides and nerve agents. Expert opinion: Increasing evidence supports BuChE as a more beneficial target in moderate-to-severe forms of AD in comparison to the well-known AChE. However, hitting a single pathological target is likely not sufficient to halt the disease progression. Therefore, patented BuChE inhibitors with a multifunctional profile may open new therapeutic avenues, since the additional activities could reinforce the therapeutic effects. Unfortunately, in vivo studies are limited and key parameters, such as ADMET data, are missing. This lack of information makes difficult to forecast the development of patented BuChEIs into effective drug candidates.
Alzheimer's disease still represents an untreated multifaceted pathology, and drugs able to stop or reverse its progression are urgently needed. In this paper, a series of naturally inspired chalcone-based derivatives were designed as structural simplification of our previously reported benzofuran lead compound, aiming at targeting both acetyl (AChE)- and butyryl (BuChE) cholinesterases that, despite having been studied for years, still deserve considerable attention. In addition, the new compounds could also modulate different pathways involved in disease progression, due to the peculiar trans-alpha,beta-unsaturated ketone in the chalcone framework. All molecules presented in this study were evaluated for cholinesterase inhibition on the human enzymes and for antioxidant and neuroprotective activities on a SH-SY5Y cell line. The results proved that almost all the new compounds were low micromolar inhibitors, showing different selectivity depending on the appended substituent; some of them were also effective antioxidant and neuroprotective agents. In particular, compound 4, endowed with dual AChE/BuChE inhibitory activity, was able to decrease ROS formation and increase GSH levels, resulting in enhanced antioxidant endogenous defense. Moreover, this compound also proved to counteract the neurotoxicity elicited by Abeta1(-)42 oligomers, showing a promising neuroprotective potential.
Human acetylcholinesterase (AChE) is a widely studied target enzyme in drug discovery for Alzheimer's disease (AD). In this paper we report evaluation of the optimum structure and chemistry of the supporting material for a new AChE-based fluorescence sensing surface. To achieve this objective, multilayered silicon wafers with spatially controlled geometry and chemical diversity were fabricated. Specifically, silicon wafers with silicon oxide patterns (SiO(2)/Si wafers), platinum-coated silicon wafers with SiO(2) patterns (SiO(2)/Pt/Ti/Si wafers), and Pt-coated wafers coated with different thicknesses of TiO(2) and SiO(2) (SiO(2)/TiO(2)/Pt/Ti/Si wafers) were labelled with the fluorescent conjugation agent HiLyte Fluor 555. Selection of a suitable material and the optimum pattern thickness required to maximize the fluorescence signal and maintain chemical stability was performed by confocal laser-scanning microscopy (CLSM). Results showed that the highest signal-to-background ratio was always obtained on wafers with 100 nm thick SiO(2) features. Hence, these wafers were selected for covalent binding of human AChE. Batch-wise kinetic studies revealed that enzyme activity was retained after immobilization. Combined use of atomic-force microscopy and CLSM revealed that AChE was homogeneously and selectively distributed on the SiO(2) microstructures at a suitable distance from the reflective surface. In the optimum design, efficient fluorescence emission was obtained from the AChE-based biosensing surface after labelling with propidium, a selective fluorescent probe of the peripheral binding site of AChE.
        
Title: Multiwell fluorometric and colorimetric microassays for the evaluation of beta-secretase (BACE-1) inhibitors Mancini F, Naldi M, Cavrini V, Andrisano V Ref: Anal Bioanal Chem, 388:1175, 2007 : PubMed
The amyloid beta (Abeta) peptide is responsible for toxic amyloid plaque formation and is central to the aetiology of Alzheimer's disease (AD). It is generated by proteolytic processing of the amyloid precursor protein (APP) by beta-secretase (BACE-1) and gamma-secretase. Consequently, inhibition of BACE-1, a rate-limiting enzyme in the production of Abeta, is an attractive therapeutic approach to the treatment of Alzheimer's disease. This paper reports on improved microtiter plate-based fluorescence and colorimetric assays for the high-throughput screening (HTS) of BACE-1 inhibitors achieved by employing, for the first time, casein fluorescein isothiocyanate (casein-FITC) and N-alpha-benzoyl-D,L-arginine p-nitroanilide (BAPNA) as substrates, since they are known to be readily available and convenient substrates for proteases. The methods are based on the fluorescence enhancement following casein-FITC proteolysis and the visible absorbance of the p-nitroaniline (pNA) produced by BAPNA hydrolysis, with both reactions catalysed by BACE-1. Casein-FITC is a high-affinity substrate (K (m) = 110 nM) for BACE-1, more so than the Swedish (SW) type peptide (a peptide containing the Swedish mutant of APP, a familiar mutation that enhances Abeta production). BACE-1 catalysis of casein-FITC proteolysis exhibited Michaelis-Menten kinetic. Therefore, it was found that BACE-1 was saturable with casein-FITC that was processed in a time- and pH-dependent manner with greater catalytic efficiency than observed for the SW peptide. The enantioselective hydrolysis of L-BAPNA by BACE-1 was observed. L-BAPNA was hydrolysed ten times more efficiently by BACE-1 than the WT (wild-type peptide). The novel methods were validated using a FRET assay as an independent reference method. Therefore, in order to select new leads endowed with multifunctional activities, drugs for Alzheimer's disease (AD) - potent acetylcholinesterase (AChE) inhibitors - were tested for BACE-1 inhibition using the proposed validated assays. Among these, donepezil, besides being an acetylcholinesterase inhibitor, was also found to be a BACE-1 inhibitor that displayed submicromolar potency (170 nM).