Background: Cholinesterase inhibitors such as donepezil are used in the treatment of Alzheimer's disease. Patients taking cholinesterase inhibitors can develop cholinergically mediated QT prolongation, which may lead to life-threatening arrhythmias. In this study we investigated the corrected QT interval (QTc) of patients taking donepezil. MethodsandResults: This study enrolled 114 outpatients attending Tarumizu Chuo Hospital. Subjects were divided into a donepezil group (n=57) or an age- and sex-matched control group (n=57). Physical findings, laboratory data, and electrocardiographic parameters were compared between the groups. QTc was significantly prolonged (mean [+/-SD] 0.443+/-0.032 s vs. 0.426+/-0.026s; P<0.001) and the percentage of patients with prolonged QTc was significantly higher (30% vs. 9%; P<0.01) in the donepezil than control group. Furthermore, in the donepezil group, QTc was significantly prolonged after patients started taking donepezil compared with baseline (from 0.433+/-0.034 to 0.442+/-0.033s; n=46; P<0.05). On univariate analysis, QTc was significantly associated with taking donepezil, as well as with hemoglobin, serum calcium concentration, and estimated glomerular filtration rate (eGFR; all P<0.01). On multivariate analysis, QTc was significantly associated with taking donepezil (P<0.001), serum potassium concentration (P<0.05), and eGFR (P<0.05). Conclusions: The incidence of QTc prolongation was more frequent in patients taking donepezil than in the control group, and was difficult to predict. Periodic electrocardiogram examinations are recommended considering the possibility of adverse events, such as fatal arrhythmias.
        
Title: Hydrophobic interactions at subsite S1' of human dipeptidyl peptidase IV contribute significantly to the inhibitory effect of tripeptides Araki M, Kanegawa N, Iwata H, Sagae Y, Ito K, Masuda K, Okuno Y Ref: Heliyon, 6:e04227, 2020 : PubMed
Functional inhibitory peptides of human dipeptidyl peptidase 4 (hDPP4) have been highly anticipated as the active ingredient of functional food for type II diabetes; however, the molecular mechanism of hDPP4 inhibition remains unclear. In this study, we focused on dipeptides and tripeptides, which display structure-function correlations that are relatively easy to analyze, and examined their interactions with hDPP4 on an atomic level using a combination of docking studies and an hDPP4 inhibition assay. First, we performed comprehensive binding mode analysis of the dipeptide library and demonstrated that the formation of a tight interaction with the S1 subsite composing part of the substrate pocket is essential for dipeptides to compete with the substrate and strongly inhibit hDPP4. Next, we synthesized tripeptides by adding various amino acids to the C-terminus of Ile-Pro and Val-Pro, which have especially high inhibitory activity among compounds in the dipeptide library, and measured the hDPP4 inhibitory activity of the tripeptides. When hydrophobic amino acids (Ile, Met, Val, Trp) were added, the inhibitory activity increased several-fold. This phenomenon could be explained as follows: the C-terminal amino acid of the tripeptide formed hydrophobic interactions with Tyr547 and Trp629, which compose the S1' subsite located relatively outside the substrate pocket, thereby stabilizing the hDPP4-peptide binding. The structural information on the interaction between hDPP4 and peptide inhibitors attained in this study is anticipated to be useful in the development of a more potent hDPP4 competitive inhibitor.
PHARC (polyneuropathy, hearing loss, cerebellar ataxia, retinitis pigmentosa, and cataract) is a human neurological disorder caused by deleterious mutations in the ABHD12 gene, which encodes an integral membrane lyso-phosphatidylserine (lyso-PS) lipase. Pharmacological or genetic disruption of ABHD12 leads to higher levels of lyso-PS lipids in human cells and the central nervous system (CNS) of mice. ABHD12 loss also causes rapid rewiring of PS content, resulting in selective increases in the level of arachidonoyl (C20:4) PS and decreases in the levels of other PS species. The biochemical basis for ABHD12-dependent PS remodeling and its pathophysiological significance remain unknown. Here, we show that genetic deletion of the lysophospholipid acyltransferase LPCAT3 blocks accumulation of brain C20:4 PS in mice lacking ABHD12 and concurrently produces hyper-increases in the level of lyso-PS in these animals. These lipid changes correlate with exacerbated auditory dysfunction and brain microgliosis in mice lacking both ABHD12 and LPCAT3. Taken together, our findings reveal that ABHD12 and LPCAT3 coordinately regulate lyso-PS and C20:4 PS content in the CNS and point to lyso-PS lipids as the likely bioactive metabolites contributing to PHARC-related neuropathologies.
        
Title: Structure-activity relationship of porphyrin-induced photoinactivation with membrane function in bacteria and erythrocytes Kato H, Komagoe K, Inoue T, Masuda K, Katsu T Ref: Photochem Photobiol Sci, 17:954, 2018 : PubMed
We analyzed the structure-activity relationship of porphyrins with the photoinactivation of membrane function in bacteria and erythrocytes. The porphyrins tested were protoporphyrin (PP), mesoporphyrin (MP), deuteroporphyrin (DP), hematoporphyrin (HP), coproporphyrin (CP) and uroporphyrin (UP), along with hematoporphyrin derivative (HPD) and photofrin (PF). These porphyrins dissipated membrane potential of Staphylococcus aureus cells depending on the degrees of respiratory inhibition and K+ leakage. The dysfunction of bacterial membrane was caused within minutes and in the order of PP approximately MP > DP > HPD >> HP > PF > CP approximately UP. For bovine erythrocytes, these porphyrins induced leakage of K+ and inhibition of the enzyme acetylcholinesterase, which is located on the outer layer of the erythrocyte membrane, in the same order as that observed in bacteria. At high concentrations of PP, MP, DP and HPD, hemolysis (the lysis of erythrocytes with liberation of hemoglobin) was also induced. We found that the degree of photoinactivation of membrane function was closely associated with porphyrin-induced morphological changes in bovine erythrocytes, forming a crenated form from the normal discoid, which is the index of the amount of porphyrins in the outer layer of the cytoplasmic membrane. Furthermore, the degree of morphological changes was related with the octanol/water partition coefficients of porphyrins. These results strongly supported that porphyrins located in the outer layer of cytoplasmic membrane inactivated the cell membrane function by photo-irradiation, and the strength of photoinactivation by porphyrins depended on their affinity to the cell membrane.
The endocannabinoid 2-arachidonoylglycerol (2-AG) is biosynthesized by diacylglycerol lipases DAGLalpha and DAGLbeta. Chemical probes to perturb DAGLs are needed to characterize endocannabinoid function in biological processes. Here we report a series of 1,2,3-triazole urea inhibitors, along with paired negative-control and activity-based probes, for the functional analysis of DAGLbeta in living systems. Optimized inhibitors showed high selectivity for DAGLbeta over other serine hydrolases, including DAGLalpha ( approximately 60-fold selectivity), and the limited off-targets, such as ABHD6, were also inhibited by the negative-control probe. Using these agents and Daglb(-/-) mice, we show that DAGLbeta inactivation lowers 2-AG, as well as arachidonic acid and eicosanoids, in mouse peritoneal macrophages in a manner that is distinct and complementary to disruption of cytosolic phospholipase-A2. We observed a corresponding reduction in lipopolysaccharide-induced tumor necrosis factor-alpha release. These findings indicate that DAGLbeta is a key metabolic hub within a lipid network that regulates proinflammatory responses in macrophages.
        
Title: Effects of miglitol, sitagliptin or their combination on plasma glucose, insulin and incretin levels in non-diabetic men Aoki K, Masuda K, Miyazaki T, Togashi Y, Terauchi Y Ref: Endocrine Journal, 57:667, 2010 : PubMed
alpha-glucosidase inhibitors (alphaGIs) increase active glucagon-like peptide-1 (GLP-1) and reduce the total glucosedependent insulinotropic polypeptide (GIP) levels, but their ability to prevent diabetes remains uncertain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as sitagliptin, increase active GLP-1 and GIP levels and improve hyperglycemia in a glucose-dependent fashion. However, the effectiveness of their combination in subjects with normal glucose tolerance (NGT) or impaired glucose tolerance (IGT) is uncertain. The present study evaluated the effect of miglitol, sitagliptin, and their combination on glucose, insulin and incretin levels in non-diabetic men. Miglitol and sitagliptin were administered according to four different intake schedules (C: no drug, M: miglitol; S: sitagliptin, M+S: miglitol and sitagliptin). The plasma glucose levels were significantly lower for M, S and M+S than for the control. The areas under the curve (AUCs) of the plasma active GLP-1 level in the M, S, and M+S groups were significantly greater than that in the control group. The AUC of the plasma active GLP-1 level was significantly greater for M+S group than for the M and S groups. The AUC of the plasma total GIP level was significantly smaller for M+S group than for the control and M and S groups. The results of our study suggest that miglitol, sitagliptin, or their combination contributes to the prevention of type 2 diabetes.
We recently described a fluorescence polarization platform for competitive activity-based protein profiling (fluopol-ABPP) that enables high-throughput inhibitor screening for enzymes with poorly characterized biochemical activity. Here, we report the discovery of a class of oxime ester inhibitors for the unannotated serine hydrolase RBBP9 from a full-deck (200,000+ compound) fluopol-ABPP screen conducted in collaboration with the Molecular Libraries Screening Center Network (MLSCN). We show that these compounds covalently inhibit RBBP9 by modifying enzyme's active site serine nucleophile and, based on competitive ABPP in cell and tissue proteomes, are selective for RBBP9 relative to other mammalian serine hydrolases.
N-myc downstream-regulated gene 1 (NDRG1)/RTP/Drg1/Cap43/rit42/TDD5/Ndr1 is expressed ubiquitously and has been proposed to play a role in growth arrest and cell differentiation. A recent study showed that mutation of this gene is responsible for hereditary motor and sensory neuropathy-Lom. However, the role of this gene in the peripheral nervous system is not fully understood. In our study, rabbit polyclonal antibodies were raised against this gene product and were used to examine changes in its expression over the time course of Wallerian degeneration and ensuing regeneration after crush injury of mouse sciatic nerves. Fluorescent immunohistochemistry showed that NDRG1 was expressed over the intact nerve fibers. Double labeling with a Schwann cell (SC) marker, S-100 protein (S-100), revealed that NDRG1 was localized in the cytoplasm of S-100-positive Schwann cells (SCs). NDRG1 expression was maintained in the early stage of myelin degradation but was then markedly depleted at the end stage of myelin degradation when frequent occurrence of BrdU-labeled SCs was observed (at 7-9 days). The depletion of NDRG1 at this time point was also confirmed by Western blotting analysis. NDRG1 expression finally recovered at the stage of remyelination, with immunoreactivity stronger than that in intact nerves. These findings suggest that NDRG1 may play an important role in the terminal differentiation of SCs during nerve regeneration.
        
Title: Cellular distribution of NDRG1 protein in the rat kidney and brain during normal postnatal development Wakisaka Y, Furuta A, Masuda K, Morikawa W, Kuwano M, Iwaki T Ref: Journal of Histochemistry & Cytochemistry, 51:1515, 2003 : PubMed
N-myc downregulated gene 1 (NDRG1) is a 43-kD protein whose mRNA is induced by DNA damage, hypoxia, or prolonged elevation of intracellular calcium. Although NDRG1 is also upregulated during cell differentiation, there are few studies on NDRG1 expression during postnatal development. Here we investigated the expression and cellular distribution of NDRG1 protein in rat kidney and brain during postnatal development. Immunohistochemical analysis revealed that the cellular localization of NDRG1 protein in the kidney changed from the proximal convoluted tubules to the collecting ducts between postnatal days 10 and 20. In the brain, a change in cellular expression was also found from the hippocampal pyramidal neurons to the astrocytes in the gray matter during the same postnatal period. These alterations in the cellular distribution of NDRG1 were associated with shifts in the molecular assembly on Western blots. Under non-reduced conditions, the main NDRG1 band was found only around 215 kD in both kidney and brain during the early postnatal stage. After postnatal day 10, the immunoreactive bands shifted to 43 kD in the kidney and 129 kD in the brain. These changes in the cellular distribution and state of assembly may correlate with the functional maturation of both organs.
        
Title: Substrate and binding specificities of bacterial polyhydroxybutyrate depolymerases Kasuya K, Ohura T, Masuda K, Doi Y Ref: Int J Biol Macromol, 24:329, 1999 : PubMed
The substrate specificities of three extracellular polyhydroxybutyrate (PHB) depolymerases from Alcaligenes faecalis (PhaZ Afa), Pseudomonas stutzeri (PhaZ Pst), and Comamonas acidovorans (PhaZ Cac), which are grouped into types A and B based on the position of a lipase box sequence in the catalytic domain, were examined for films of 12 different aliphatic polyesters. Each of these PHB depolymerases used was capable of hydrolyzing poly(3-hydroxybutyrate) (P(3HB)), poly(3-hydroxypropionate) (P(3HP)), poly(4-hydroxybutyrate) (P(4HB)), poly(ethylene succinate) (PESU), and poly(ethylene adipate) (PEA) but could not hydrolyze another seven polyesters. In addition, the binding characteristics of substrate binding domains from PhaZ Afa, PhaZ Cac, and PHB depolymerase from Comamonas testosteroni (PhaZ Cte) were studied by using fusions with glutathione S-transferase (GST). All of fusion proteins adsorbed strongly on the surfaces of polyester granules of P(3HB), P(3HP), and poly(2-hydroxypropionate) (P(2HP)) which was not hydrolyzed by the PHB depolymerases used in this study, while they did not bind on Avicel and chitin granules. The adsorption kinetics of the fusion proteins to the surface of P(3HB) and P(2HP) granules were found to obey the Langmuir isotherm. The cross-area per molecule of fusion protein bound to P(3HB) granules was estimated to be 12+/-4 nm2/molecule. It has been suggested that the active sites in catalytic domains of PHB depolymerases have a similar conformational structure, and that several amino acids in substrate-binding domains of PHB depolymerases interact specifically with the surface of polyesters.