Title: Multivariate Assessment of Lipoxidative Metabolites, Trace Biometals, and Antioxidant and Detoxifying Activities in the Cerebrospinal Fluid Define a Fingerprint of Preclinical Stages of Alzheimer's Disease Mesa-Herrera F, Marin R, Torrealba E, Diaz M Ref: J Alzheimers Dis, :, 2022 : PubMed
BACKGROUND: There exists considerable interest in the identification of molecular traits during early stages of Alzheimer's disease (AD). Mild cognitive impairment (MCI) is considered the closest prodromal stage of AD, and to develop gradually from earlier stages although not always progresses to AD. Classical cerebrospinal fluid (CSF) AD biomarkers, amyloid-beta peptides and tau/p-tau proteins, have been measured in prodromal stages yet results are heterogeneous and far from conclusive. Therefore, there exists a pressing need to identify a neurochemical signature for prodromal stages and to predict which cases might progress to AD. OBJECTIVE: Exploring potential CSF biomarkers related to brain oxidative and inorganic biochemistry during prodromal stages of the disease. METHODS: We have analyzed CSF levels of lipoxidative markers (MDA and 8-isoF2alpha), biometals (Cu, Zn, Se, Mn, and Fe), iron-transport protein transferrin (TFER), antioxidant enzymes (SOD and GPx4), detoxifying enzymes (GST and BuChE), as well as classical amyloid-beta and total and phosphorylated tau, in cognitively healthy controls, patients with MCI, and subjects exhibiting subjective memory complaints (SMC). RESULTS: Inter-group differences for several variables exhibit differentiable trends along the HC -> SMC -> MCI sequence. More interestingly, the combination of Se, Cu, Zn, SOD, TFER, and GST variables allow differentiable fingerprints for control subjects and each prodromal stage. Further, multivariate scores correlate positively with neurocognitive In-Out test, hence with both episodic memory decline and prediction to dementia. CONCLUSION: We conclude that changes in the CSF biochemistry related to brain oxidative defense and neurometallomics might provide more powerful and accurate diagnostic tools in preclinical stages of AD.
Y chromosomes underlie sex determination in mammals, but their repeat-rich nature has hampered sequencing and associated evolutionary studies. Here we trace Y evolution across 15 representative mammals on the basis of high-throughput genome and transcriptome sequencing. We uncover three independent sex chromosome originations in mammals and birds (the outgroup). The original placental and marsupial (therian) Y, containing the sex-determining gene SRY, emerged in the therian ancestor approximately 180 million years ago, in parallel with the first of five monotreme Y chromosomes, carrying the probable sex-determining gene AMH. The avian W chromosome arose approximately 140 million years ago in the bird ancestor. The small Y/W gene repertoires, enriched in regulatory functions, were rapidly defined following stratification (recombination arrest) and erosion events and have remained considerably stable. Despite expression decreases in therians, Y/W genes show notable conservation of proto-sex chromosome expression patterns, although various Y genes evolved testis-specificities through differential regulatory decay. Thus, although some genes evolved novel functions through spatial/temporal expression shifts, most Y genes probably endured, at least initially, because of dosage constraints.
        
Title: Evaluation of organophosphorus pesticide residues in citrus fruits from the Valencian community (Spain) Torres CM, Pico Y, Marin R, Manes J Ref: Journal of AOAC International, 80:1122, 1997 : PubMed
Approximately 200 citrus samples from markets of the Valencian Community (Spain) were analyzed to establish their residue levels in 12 organophosphorus pesticide residues during the 1994-1995 campaign. The organophosphorus pesticides carbophenothion, chlorpyriphos, chlorfenvinphos, diazinon, ethion, fenitrothion, malathion, methidation, methylparathion, phosmet, quinalphos, and tetradifon were simultaneously extracted by matrix solid-phase dispersion and determined by gas chromatography-mass spectrometry using selected ion monitoring mode. A total of 32.25% contained pesticide residues and 6.9% exceeded the European Union Maximum Residue Levels (MRLs). The pesticides found in the samples with residues above MRLs were carbophenothion, ethion, methidathion, and methyl parathion. Lower level residues of these and the other pesticides studied (except diazinon) were frequently found. The estimated daily intake of the 12 organophosphorus pesticide residues during the studied period was 4.87 x 10(-4) mg/kg body weight/day. This value is lower than the provisional tolerances dairy intakes proposed by the Food and Agriculture Organization and the World Health Organization.