Title: Mutations in Acetylcholinesterase2 (ace2) increase the insensitivity of acetylcholinesterase to fosthiazate in the root-knot nematode Meloidogyne incognita Huang WK, Wu QS, Peng H, Kong LA, Liu SM, Yin HQ, Cui RQ, Zhan LP, Cui JK, Peng DL Ref: Sci Rep, 6:38102, 2016 : PubMed
The root-knot nematode Meloidogyne incognita causes severe damage to continuously cropping vegetables. The control of this nematode relies heavily on organophosphate nematicides in China. Here, we described resistance to the organophosphate nematicide fosthiazate in a greenhouse-collected resistant population (RP) and a laboratory susceptible population (SP) of M. incognita. Fosthiazate was 2.74-fold less toxic to nematodes from RP than that from SP. Quantitative real-time PCR revealed that the acetylcholinesterase2 (ace2) transcription level in the RP was significantly higher than that in the SP. Eighteen nonsynonymous amino acid differences in ace2 were observed between the cDNA fragments of the RP and SP. The acetylcholinesterase (AChE) protein activity in the RP was significantly reduced compared with that in the SP. After knocking down the ace2 gene, the ace2 transcription level was significantly decreased, but no negative impact on the infection of juveniles was observed. The 50% lethal concentration of the RNAi RP population decreased 40%, but the inhibition rate of fosthiazate against AChE activity was significantly increased in RP population. Thus, the increased fosthiazate insensitivity in the M. incognita resistant population was strongly associated with mutations in ace2. These results provide valuable insights into the resistance mechanism of root-knot nematode to organophosphate nematicides.
        
Title: Next generation digital PCR measurement of hepatitis B virus copy number in formalin-fixed paraffin-embedded hepatocellular carcinoma tissue Huang JT, Liu YJ, Wang J, Xu ZG, Yang Y, Shen F, Liu XH, Zhou X, Liu SM Ref: Clinical Chemistry, 61:290, 2015 : PubMed
BACKGROUND: Hepatocellular carcinoma (HCC) is strongly associated with hepatitis B virus (HBV) infection. False-negative results are common in routine serological tests and quantitative real-time PCR because of HBV surface antigen (HBsAg) variation and low HBV copy number. Droplet digital PCR (ddPCR), a next generation digital PCR, is a novel, sensitive, and specific platform that can be used to improve HBV detection. METHODS: A total of 131 HCC cases with different tumor stages and clinical features were initially classified with a serological test as HBsAg positive (n = 107) or negative (n = 24) for HBV infection. Next, DNA templates were prepared from the corresponding formalin-fixed paraffin-embedded (FFPE) tissues to determine HBV copy number by ddPCR. RESULTS: HBV copy numbers, successfully determined for all clinical FFPE tissues (n = 131), ranged from 1.1 to 175.5 copies/muL according to ddPCR. The copy numbers of HBV were positively correlated with tumor-nodes-metastasis (P = 0.008) and Barcelona-Clinic Liver Cancer (P = 0.045) classification. Moreover, serum cholinesterase correlated with hepatitis B viral load (P = 0.006). CONCLUSIONS: HBV infection is a key factor that influences tumorigenesis in HCC by regulating tumor occurrence and development. ddPCR improves the analytical sensitivity and specificity of measurements in nucleic acids at a single-molecule level and is suitable for HBV detection.
        
Title: High-resolution melting analysis reveals genetic polymorphisms in MicroRNAs confer hepatocellular carcinoma risk in Chinese patients Qi JH, Wang J, Chen J, Shen F, Huang JT, Sen S, Zhou X, Liu SM Ref: BMC Cancer, 14:643, 2014 : PubMed
BACKGROUND: Although several single-nucleotide polymorphisms in microRNA (miRNA) genes have been associated with primary hepatocellular carcinoma, published findings regarding this relationship are inconsistent and inconclusive. METHODS: The high-resolution melting (HRM) analysis was used to determine whether the occurrence of the SNPs of miR-146a C > G (rs2910164), miR-196a2 C > T (rs11614913), miR-301b A > G (rs384262), and miR-499 C > T (rs3746444) differs in frequency-matched 314 HCC patients and 407 controls by age and sex. RESULTS: The groups' genotype distributions of miR-196a2 C > T and miR-499 C > T differed significantly (P < 0.01), both of them increased the risk of HCC in different dominant genetic models (P < 0.01); compared with individuals carrying one or neither of the unfavorable genotypes, individuals carrying both unfavorable genotypes (CT + CC) had a 3.11-fold higher HCC risk (95 % confidence interval (CI), 1.89-5.09; P = 7.18 x 10-6). Moreover, the allele frequency of miR-499 C > T was significantly different between the two groups, and the HCC risk of carriers of the C allele was higher than that of carriers of the T allele (odds ratio, 1.53; 95 % CI, 1.15-2.03; P = 0.003). Further, we found that the activated partial thromboplastin time (APTT) in HCC patients with miR-196a2 CC genotype was longer than patients with TT genotypes (P < 0.05), and HCC patients with miR-499 C allele had higher serum levels of direct bilirubin, globulin, gamma-glutamyltranspeptidase, alkaline phosphatase, and lower serum cholinesterase (P < 0.05). CONCLUSIONS: Our findings suggest that the SNPs in miR-196a2 C > T and miR-499 C > T confer HCC risk and that affect the clinical laboratory characteristics of HCC patients.
A fine physical map of the rice (Oryza sativa spp. Japonica var. Nipponbare) chromosome 5 with bacterial artificial chromosome (BAC) and PI-derived artificial chromosome (PAC) clones was constructed through integration of 280 sequenced BAC/PAC clones and 232 sequence tagged site/expressed sequence tag markers with the use of fingerprinted contig data of the Nipponbare genome. This map consists of five contigs covering 99% of the estimated chromosome size (30.08 Mb). The four physical gaps were estimated at 30 and 20 kb for gaps 1-3 and gap 4, respectively. We have submitted 42.2-Mb sequences with 29.8 Mb of nonoverlapping sequences to public databases. BAC clones corresponding to telomere and centromere regions were confirmed by BAC-fluorescence in situ hybridization (FISH) on a pachytene chromosome. The genetically centromeric region at 54.6 cM was covered by a minimum tiling path spanning 2.1 Mb with no physical gaps. The precise position of the centromere was revealed by using three overlapping BAC/PACs for approximately 150 kb. In addition, FISH results revealed uneven chromatin condensation around the centromeric region at the pachytene stage. This map is of use for positional cloning and further characterization of the rice functional genomics.
We report the complete sequence of a large rod-shaped DNA virus, called the Hz-1 virus. This virus persistently infects the Heliothis zea cell lines. The Hz-1 virus has a double-stranded circular DNA genome of 228,089 bp encoding 154 open reading frames (ORFs) and also expresses a persistence-associated transcript 1, PAT1. The G+C content of the Hz-1 virus genome is 41.8%, with a gene density of one gene per 1.47 kb. Sequence analysis revealed that a 9.6-kb region at 43.6 to 47.8 map units harbors five cellular genes encoding proteins with homology to dUTP pyrophosphatase, matrix metalloproteinase, deoxynucleoside kinase, glycine hydroxymethyltransferase, and ribonucleotide reductase large subunit. Other cellular homologs were also detected dispersed in the viral genome. Several baculovirus homologs were detected in the Hz-1 virus genome. These include PxOrf-70, PxOrf-29, AcOrf-81, AcOrf-96, AcOrf-22, VLF-1, RNA polymerase LEF-8 (orf50), and two structural proteins, p74 and p91. The Hz-1 virus p74 homolog shows high structural conservation with a double transmembrane domain at its C terminus. Phylogenetic analysis of the p74 revealed that the Hz-1 virus is evolutionarily distant from the baculoviruses. Another distinctive feature of the Hz-1 virus genome is a gene that is involved in insect development. However, the remainder of the ORFs (81%) encoded proteins that bear no homology to any known proteins. In conclusion, the sequence differences between the Hz-1 virus and the baculoviruses outnumber the similarities and suggest that the Hz-1 virus may form a new family of viruses distantly related to the Baculoviridae: