A cholinergic crisiss is a state characterized by excess acetylcholine owing to the ingestion of cholinesterase inhibitors or cholinergic agonists. We report the first case of a cholinergic crisis after the ingestion of a carpronium chloride solution, a topical solution used to treat alopecia, seborrhea sicca, and vitiligo. An 81-year-old woman with no prior medical history was transported to our emergency department because the patient had disturbance of consciousness after ingesting three bottles of FUROZIN(a) solution (90 mL, 4500 mg as carpronium chloride). A family member who found the patient called for emergency medical services (EMS) personnel, who contacted the patient ten minutes after ingestion. The patient's Glasgow Coma Scale score was 12 (E4V3M5), and vital signs were as follows: blood pressure, 80/40 mmHg; heart rate, 40 beats/min. The patient vomited repeatedly in the ambulance. On arrival to the ED, the patient's systolic blood pressure and heart rate temporarily decreased to 80 mmHg and 40 beats/min, respectively. Seventy-eight minutes after ingestion, gastric lavage was performed. The patient's symptoms, which included excess salivation, sweating, and hot flush, improved 24 h after ingestion, and the patient's vital signs stabilized without atropine or vasopressors. On the second day of admission, the patient was examined by a psychiatrist and discharged without suicidal ideation. Carpronium chloride has a chemical structure similar to that of acetylcholine; therefore, it exhibits both cholinergic and local vasodilatory activities. There is limited information on the pharmacokinetics of ingested carpronium chloride; therefore, physicians should be made aware that ingesting a carpronium chloride solution may cause a cholinergic crisis.
Acetylcholine (ACh), a quaternary ammonium cation, is known as one of the itch inducer in atopic dermatitis (AD), an inflammatory skin disease with intense itching. Previous research has reported accumulation of ACh in lesional site of AD patients. Generally, ACh is metabolized by cholinesterase (ChE). Therefore, one of the causes of ACh accumulation may be the suppression of ChE activity. Increased levels of the multifunctional bioactive sphingolipid sphingosylphosphorylcholine (SPC) have also been detected in AD. Since SPC possesses a quaternary ammonium cation, like ACh, it is possible that SPC affects the activity of ChE catalyzing ACh metabolization. We investigated whether SPC influences the activity of ChE by performing enzymatic analysis of ChE in the presence of SPC. We found that SPC strongly suppressed acetylcholinesterase (AChE) activity, but the suppression of butyrylcholinesterase by SPC was quite low. The Michaelis constant (K(m)) of AChE in the presence of SPC increased, and the maximum velocity (V(max)) decreased, indicating that SPC acts as mixed-type inhibitor for AChE. The analysis of SPC analogs clarified the importance of both the quaternary ammonium cation and the carbon chain length of SPC for the AChE inhibitory effect and showed that SPC was unique in AChE inhibition among the sphingolipids in this study. These findings indicate a novel function of SPC on AChE inhibition. Thus, the inhibition activity of SPC may be a factor in the increase of ACh in AD.
PURPOSE: Capecitabine is a prodrug that undergoes metabolism in three steps to form an active 5-fluorouracil (5-FU). The first step is primarily catalyzed by liver carboxylesterases (CES) 1. Here, we examined the effects of CES1 variants on pharmacokinetics and toxicity of capecitabine. METHODS: We enrolled postoperative colorectal cancer (CRC) patients administered with adjuvant capecitabine plus oxaliplatin (CapeOX) and metastatic CRC patients receiving CapeOX. The pharmacokinetic analysis of the first capecitabine dose (1000 mg/m(2)) was done on day 1, and oxaliplatin administration was shifted to day 2. Plasma concentrations of capecitabine, 5'-deoxy-5-fluorocytidine, 5'-deoxy-5-fluorouridine (5'-DFUR), and 5-FU were analyzed by high-performance liquid chromatography. CES1 polymorphisms (rs3217164, rs2244614, rs2244613, rs7187684, and rs11861118) and the functional CES1 genes (1A1, var1A1, 1A2, and pseudo 1A3) in their diplotype configurations were analyzed by direct sequencing. RESULTS: Thirty-seven patients were enrolled from September 2017 to February 2020. Patients with a higher area under the plasma concentration-time curve to capecitabine dose ratio (AUC/dose) of 5'-DFUR than its mean showed a higher frequency of overall >/= grade 3 toxicity and lower relative dose intensity (RDI) of capecitabine than those with a lower ratio. Higher CES1 activity expressed as a metabolic ratio (AUC of capecitabine/sum of three AUCs of each metabolite) lower than its mean was associated with higher 5'-DFUR AUC/dose and lower RDI, indicating essential roles of CES1 in capecitabine activation to produce 5'-DFUR. However, the association between CES1 variants and capecitabine pharmacokinetics and toxicity was not significant. CONCLUSION: CES1 variants are not associated with capecitabine pharmacokinetics and toxicity.
        
Title: Synthesis and biological evaluation of pyrano[4,3-b][1]benzopyranone derivatives as monoamine oxidase and cholinesterase inhibitors Takao K, Kubota Y, Kamauchi H, Sugita Y Ref: Bioorg Chem, 83:432, 2018 : PubMed
A series of eighteen pyrano[4,3-b][1]benzopyranone derivatives (1a-9b) were synthesized, and structure-activity relationships of their monoamine oxidase (MAO) A and B, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) inhibitory activities were evaluated. Most of the synthesized compounds exhibited weak inhibitory activity toward MAO-A, whereas compounds 2a, 2b, 4a, 4b, 5a, 5b, 6a, 6b, 8a and 8b showed potent inhibitory activities toward MAO-B. Intriguingly, compounds 5a, 5b, and 8a showed inhibitory activities comparable to pargylin, used as a positive control for MAO-B. Substitution of butoxy at the C3 position or of chlorine at the C8 position of pyrano[4,3-b][1]benzopyranone increased the inhibitory activity of the compound toward MAO-B. The results of a molecular docking study supported this structural effect. Most of the compounds exhibited no or slight inhibitory activity toward AChE and BChE, with exo type compounds bearing a butoxy group, such as compounds 2b, 5b and 8b, showing weak but distinct inhibitory activities toward BChE. This report is the first to identify pyrano[4,3-b][1]benzopyranone derivatives as potent and selective MAO-B inhibitors. 3-Butoxy-8-chloro-pyrano[4,3-b][1]benzopyranone (5b) may be useful as a lead compound for the development of MAO-B inhibitors.
        
Title: Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer Fujita K, Kubota Y, Ishida H, Sasaki Y Ref: World J Gastroenterol, 21:12234, 2015 : PubMed
Irinotecan hydrochloride is a camptothecin derivative that exerts antitumor activity against a variety of tumors. SN-38 produced in the body by carboxylesterase is the active metabolite of irinotecan. After irinotecan was introduced for the treatment of metastatic colorectal cancer (CRC) at the end of the last century, survival has improved dramatically. Irinotecan is now combined with 5-fluorouracil, oxaliplatin and several molecularly-targeted anticancer drugs, resulting in the extension of overall survival to longer than 30 mo. Severe, occasionally life-threatening toxicity occurs sporadically, even in patients in relatively good condition who have a low risk of chemotherapy-induced toxicity, often causing the failure of irinotecan-based chemotherapy. Clinical pharmacological studies have revealed that such severe toxicity is related to exposure to SN-38 and genetic polymorphisms in UDP-glucuronosyltransferase 1A1 gene. The large inter- and intra-patient variability in systemic exposure to SN-38 is determined not only by genetic factors but also by physiological and environmental factors. This review first summarizes the roles of irinotecan in chemotherapy for metastatic CRC and then discusses the optimal dosing of irinotecan based on the aforementioned factors affecting systemic exposure to SN-38, with the ultimate goal of achieving personalized irinotecan-based chemotherapy.
        
Title: Contribution of cyclooxygenase-dependent mechanisms to contractile responses to donepezil in the rat urinary bladder Shimizu N, Nakahara T, Kubota Y, Sakamoto K, Ishii K Ref: Pharmacology, 86:281, 2010 : PubMed
Donepezil, an inhibitor of acetylcholinesterase, is used to improve cholinergic neurotransmission and cognitive function in Alzheimer's disease. In the present study, contractile effects of donepezil on the rat urinary bladder were examined and compared with those of the nonselective cholinesterase inhibitor neostigmine. Both donepezil and neostigmine produced concentration-dependent contractile responses of the isolated rat urinary bladder strips. The neostigmine-induced contractions were abolished by atropine. However, donepezil produced contractions of urinary bladders partly through atropine-insensitive mechanisms. The atropine-resistant component of donepezil-induced contraction was significantly reduced by the cyclooxygenase inhibitor indomethacin. These results suggest that cyclooxygenase-derived prostanoids contribute, at least in part, to contractile effects of donepezil in the rat urinary bladder.
        
Title: Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task Tort AB, Kramer MA, Thorn CA, Gibson DJ, Kubota Y, Graybiel AM, Kopell NJ Ref: Proc Natl Acad Sci U S A, 105:20517, 2008 : PubMed
Oscillatory rhythms in different frequency ranges mark different behavioral states and are thought to provide distinct temporal windows that coherently bind cooperating neuronal assemblies. However, the rhythms in different bands can also interact with each other, suggesting the possibility of higher-order representations of brain states by such rhythmic activity. To explore this possibility, we analyzed local field potential oscillations recorded simultaneously from the striatum and the hippocampus. As rats performed a task requiring active navigation and decision making, the amplitudes of multiple high-frequency oscillations were dynamically modulated in task-dependent patterns by the phase of cooccurring theta-band oscillations both within and across these structures, particularly during decision-making behavioral epochs. Moreover, the modulation patterns uncovered distinctions among both high- and low-frequency subbands. Cross-frequency coupling of multiple neuronal rhythms could be a general mechanism used by the brain to perform network-level dynamical computations underlying voluntary behavior.
An asymmetric synthesis of the core carbazole structure, 6-desprenyl-carquinostatin 3 and 6-descycloavandulyl-lavanduquinocin 3, toward a total synthesis of carquinostatin A (1) and lavanduquinocin (2), has been established. Lipase QLM (Meito) catalyzed enantioselective acetylation of the racemic alcohol 6 gave the (-)-acetate 7 and the (+)-alcohol 6 with high enantioselectivity. The absolute stereochemistry of the (-)- and (+)-alcohol 6 have been determined to be R- and S-configurations, respectively, by the advanced Mosher method. In the same manner, the (-)-acetate 13 and the (+)-alcohol 12 have been obtained from the racemic alcohol 12. The (R)-(-)-acetate 13, derived from the (R)-(-)-acetate 7, was the same as the (-)-acetate 13, which has been determined to be (R)-configuration. Oxidation of the (R)-(-)-acetate 13 followed by hydrolysis afforded (R)-(-)-6-desprenyl-carquinostatin [and (R)-(-)-6-descycloavandulyl-lavanduquinocin] 3. In addition, oxidation of the (S)-(+)-alcohol 12 provided (S)-(+)-3, which is the enantiomer of 6-desprenyl-carquinostatin A (R)-(-)-3.
The striatum and hippocampus are conventionally viewed as complementary learning and memory systems, with the hippocampus specialized for fact-based episodic memory and the striatum for procedural learning and memory. Here we directly tested whether these two systems exhibit independent or coordinated activity patterns during procedural learning. We trained rats on a conditional T-maze task requiring navigational and cue-based associative learning. We recorded local field potential (LFP) activity with tetrodes chronically implanted in the caudoputamen and the CA1 field of the dorsal hippocampus during 6-25 days of training. We show that simultaneously recorded striatal and hippocampal theta rhythms are modulated differently as the rats learned to perform the T-maze task but nevertheless become highly coherent during the choice period of the maze runs in rats that successfully learned the task. Moreover, in the rats that acquired the task, the phase of the striatal-hippocampal theta coherence was modified toward a consistent antiphase relationship, and these changes occurred in proportion to the levels of learning achieved. We suggest that rhythmic oscillations, including theta-band activity, could influence not only neural processing in cortico-basal ganglia circuits but also dynamic interactions between basal ganglia-based and hippocampus-based forebrain circuits during the acquisition and performance of learned behaviors. Experience-dependent changes in coordination of oscillatory activity across brain structures thus may parallel the well known plasticity of spike activity that occurs as a function of experience.
Oscillatory activity is a candidate mechanism for providing frequency coding for the generation, storage and replay of sequential representations of events and episodes. We recorded local field potentials (LFPs) and spike activity in the striatum, a basal ganglia structure implicated in behavioral action-sequence learning and performance, as rats engaged in spontaneous and instructed behaviors in a T-maze task. We found that during voluntary behaviors, striatal LFPs exhibit prominent theta-band oscillations together with rhythms at higher and lower frequencies. Analysis of the theta-band activity demonstrated that these oscillations are strongly modulated during task performance and increase as the animals choose and execute their turning responses in the cue-instructed T-maze task. These theta rhythms are locally generated and are coherent across large parts of the striatum. We suggest that modulation of oscillatory activity in the striatum may be a key feature of neural processing related to the control of voluntary behavior.
Background Vibrio parahaemolyticus, a gram-negative marine bacterium, is a worldwide cause of food-borne gastroenteritis. V parahaemolyticus strains of a few specific serotypes, probably derived from a common clonal ancestor, have lately caused a pandemic of gastroenteritis. The organism is phylogenetically close to V cholerae, the causative agent of cholera.
METHODS:
The whole genome sequence of a clinical V parahaemolyticus strain RIMD2210633 was established by shotgun sequencing. The coding sequences were identified by use of Gambler and Glimmer programs. Comparative analysis with the V cholerae genome was undertaken with MUMmer.
FINDINGS:
The genome consisted of two circular chromosomes of 3288558 bp and 1877212 bp; it contained 4832 genes. Comparison of the V parahaemolyticus genome with that of V cholerae showed many rearrangements within and between the two chromosomes. Genes for the type III secretion system (TTSS) were identified in the genome of V parahaemolyticus; V cholerae does not have these genes.
INTERPRETATION:
The TTSS is a central virulence factor of diarrhoea-causing bacteria such as shigella, salmonella, and enteropathogenic Escherichia coli, which cause gastroenteritis by invading or intimately interacting with intestinal epithelial cells. Our results suggest that V parahaemolyticus and V cholerae use distinct mechanisms to establish infection. This finding explains clinical features of V parahaemolyticus infections, which commonly include inflammatory diarrhoea and in some cases systemic manifestations such as septicaemia, distinct from those of V cholerae infections, which are generally associated with non-inflammatory diarrhoea.
This study examines the effects of inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) on acetylcholine (ACh)-induced contraction in rat urinary bladder smooth muscle. Neostigmine, a non-selective ChE inhibitor, caused concentration-dependent contractions in rat urinary bladder strips, whereas tetraisopropylpyrophosphoramide (iso-OMPA; a BuChE inhibitor) failed to affect the resting tone of the preparations. Neostigmine (1 microM) markedly augmented the contractile responses to ACh. Although iso-OMPA (10 microM) also potentiated ACh-induced contraction, the effect was less than that evoked by neostigmine. The activities of AChE in rat urinary bladder strips were significantly (P<0.05) higher than those of BuChE. These results indicated that AChE, rather than BuChE, plays an important role in controlling ACh-induced contractions of rat urinary bladder.
        
Title: Regional and cellular localisation of GABA(A) receptor subunits in the human basal ganglia: An autoradiographic and immunohistochemical study Waldvogel HJ, Kubota Y, Fritschy J, Mohler H, Faull RL Ref: Journal of Comparative Neurology, 415:313, 1999 : PubMed
The regional and cellular localisation of gamma-aminobutyric acid(A) (GABA(A)) receptors was investigated in the human basal ganglia using receptor autoradiography and immunohistochemical staining for five GABA(A) receptor subunits (alpha(1), alpha(2), alpha(3), beta(2, 3), and gamma(2)) and other neurochemical markers. The results demonstrated that GABA(A) receptors in the striatum showed considerable subunit heterogeneity in their regional distribution and cellular localisation. High densities of GABA(A) receptors in the striosome compartment contained the alpha(2), alpha(3), beta(2, 3), and gamma(2) subunits, and lower densities of receptors in the matrix compartment contained the alpha(1), alpha(2), alpha(3), beta(2,3), and gamma(2) subunits. Also, six different types of neurons were identified in the striatum on the basis of GABA(A) receptor subunit configuration, cellular and dendritic morphology, and chemical neuroanatomy. Three types of alpha(1) subunit immunoreactive neurons were identified: type 1, the most numerous (60%), were medium-sized aspiny neurons that were immunoreactive for parvalbumin and alpha(1), beta(2,3), and gamma(2) subunits; type 2 (38%) were medium-sized to large aspiny neurons immunoreactive for calretinin and alpha(1), alpha(3), beta(2,3), and gamma(2) subunits; and type 3 (2%) were large sparsely spiny neurons immunoreactive for alpha(1), alpha(3), beta(2,3), and gamma(2) subunits. Type 4 neurons were calbindin-positive and immunoreactive for alpha(2), alpha(3), beta(2,3), and gamma(2) subunits. The remaining neurons were immunoreactive for choline acetyltransferase (ChAT) and alpha(3) subunit (type 5) or were neuropeptide Y-positive with no GABA(A) receptor subunit immunoreactivity (type 6). The globus pallidus contained three types of neurons: types 1 and 2 were large neurons and were immunoreactive for alpha(1), alpha(3), beta(2,3), and gamma(2) subunits and for parvalbumin alone (type 1) or for both parvalbumin and calretinin (type 2); type 3 neurons were medium-sized and immunoreactive for calretinin and alpha(1), beta(2, 3), and gamma(2) subunits. These results show that the subunit composition of GABA(A) receptors displays considerable regional and cellular variation in the human striatum but are more homogeneous in the globus pallidus.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7, derived from an outbreak in Sakai city, Japan in 1996, possesses two kinds of plasmids: a 93-kb plasmid termed pO157, found in clinical EHEC isolates world-wide and a 3.3-kb plasmid termed pOSAK1, prevalent in EHEC strains isolated in Japan. Complete nucleotide sequences of both plasmids have been determined, and the putative functions of the encoded proteins and the cis-acting DNA sequences have been analyzed. pO157 shares strikingly similar genes and DNA sequences with F-factor and the transmissible drug-resistant plasmid R100 for DNA replication, copy number control, plasmid segregation, conjugative functions and stable maintenance in the host, although it is defective in DNA transfer by conjugation due to the truncation and deletion of the required genes and DNA sequences. In addition, it encodes several proteins implicated in EHEC pathogenicity such as an EHEC hemolysin (HlyA), a catalase-peroxidase (KatP), a serine protease (EspP) and type II secretion system. pOSAK1 possesses a ColE1-like replication system, and the DNA sequence is extremely similar to that of a drug-resistant plasmid, NTP16, derived from Salmonella typhimurium except that it lacks drug resistance transposons.