Title: The effect of imidazolium cations on the structure and activity of the Candida antarctica Lipase B enzyme in ionic liquids Kim HS, Eom D, Koo YM, Yingling YG Ref: Phys Chem Chem Phys, 18:22062, 2016 : PubMed
In order to understand how cations affect the structural changes and enzyme activity of Lipase B from Candida antarctica, we performed all-atom molecular dynamics simulations of CALB in four types of ionic liquids (ILs) with varying sizes of imidazolium cations and correlated these results with the experimentally determined CALB activity. The imidazolium cations under study differ in the alkyl tail length in the following order: [Emim](+) < [Bmim](+) < [Hmim](+) < [Omim](+). We observed that the best enzyme activity and structural stability of CALB are obtained in [Bmim][TfO] and [Hmim][TfO]. In contrast, in [Emim][TfO], bonding of [TfO](-) to LYS-290 disrupts the interactions between LYS-290 and ILE-285, which leads to a closed catalytic gate conformation with low accessibility of substrates to the catalytic triad. In [Omim][TfO], strong hydrophobic interactions between [Omim](+) and LEU-278 result in a significant loss of the secondary structure of the alpha-10 helix and cause the exposure of the catalytic triad to ILs, which affects the stability of the catalytic triad and consequently deteriorates the enzyme activity. Overall, our study indicates that a high ion coordination number ([Emim][TfO]) or the presence of a long hydrophobic tail ([Omim][TfO]) can facilitate ion-protein interactions that cause structural distortions and a decrease in CALB enzyme activity in ILs.
        
Title: The relationship between enhanced enzyme activity and structural dynamics in ionic liquids: a combined computational and experimental study Kim HS, Ha SH, Sethaphong L, Koo YM, Yingling YG Ref: Phys Chem Chem Phys, 16:2944, 2014 : PubMed
Candida antarctica lipase B (CALB) is an efficient biocatalyst for hydrolysis, esterification, and polymerization reactions. In order to understand how to control enzyme activity and stability we performed a combined experimental and molecular dynamics simulation study of CALB in organic solvents and ionic liquids (ILs). Our results demonstrate that the conformational changes of the active site cavity are directly related to enzyme activity and decrease in the following order: [Bmim][TfO] > tert-butanol > [Bmim][Cl]. The entrance to the cavity is modulated by two isoleucines, ILE-189 and ILE-285, one of which is located on the alpha-10 helix. The alpha-10 helix can substantially change its conformation due to specific interactions with solvent molecules. This change is acutely evident in [Bmim][Cl] where interactions of LYS-290 with chlorine anions caused a conformational switch between alpha-helix and turn. Disruption of the alpha-10 helix structure results in a narrow cavity entrance and, thus, reduced the activity of CALB in [Bmim][Cl]. Finally, our results show that the electrostatic energy between solvents in this study and CALB is correlated with the structural changes leading to differences in enzyme activity.
Sugar fatty acid esters are bio-surfactants known for their non-toxic, non-ionic, and high biodegradability . With great emulsifying and conditioning effects, sugar fatty acids are widely used in the food, pharmaceutical, and cosmetic industries. Biosynthesis of sugar fatty acid esters has attracted growing attention in recent decades. In this study, the enzymatic synthesis of sugar fatty acid esters in ionic liquids was developed, optimized, and scaled up. Reaction parameters affecting the conversion yield of lipase-catalyzed synthesis of glucose laurate from glucose and vinyl laurate (i.e. temperature, vinyl laurate/glucose molar ratio, and enzyme loads) were optimized by response surface methodology (RSM). In addition, production was scaled up to 2.5 L, and recycling of enzyme and ionic liquids was investigated. The results showed that under optimal reaction conditions (66.86 degrees C, vinyl laurate/glucose molar ratio of 7.63, enzyme load of 73.33 g/L), an experimental conversion yield of 96.4% was obtained which is close to the optimal value predicted by RSM (97.16%). A similar conversion yield was maintained when the reaction was carried out at 2.5 L. Moreover, the enzymes and ionic liquids could be recycled and reused effectively for up to 10 cycles. The results indicate the feasibility of ionic liquids as novel solvents for the biosynthesis of sugar fatty acid esters.
        
Title: Optimization of lipase-catalyzed synthesis of caffeic acid phenethyl ester in ionic liquids by response surface methodology Ha SH, Van Anh T, Koo YM Ref: Bioprocess Biosyst Eng, 36:799, 2013 : PubMed
Lipase-catalyzed caffeic acid phenethyl ester (CAPE) synthesis in ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([Emim][Tf(2)N]), was investigated in this study. The effects of several reaction conditions, including reaction time, reaction temperature, substrate molar ratio of phenethyl alcohol to caffeic acid (CA), and weight ratio of enzyme to CA, on CAPE yield were examined. In a single parameter study, the highest CAPE yield in [Emim][Tf(2)N] was obtained at 70 degreesC with a substrate molar ratio of 30:1 and weight ratio of enzyme to CA of 15:1. Based on these results, response surface methodology (RSM) with a 3-level-4-factor central composite rotatable design (CCRD) was adopted to evaluate enzymatic synthesis of CAPE in [Emim][Tf(2)N]. The four major factors were reaction time (36-60 h), reaction temperature (65-75 degreesC), substrate molar ratio of phenethyl alcohol to CA (20:1-40:1), and weight ratio of enzyme to CA (10:1-20:1). A quadratic equation model was used to analyze the experimental data at a 95 % confidence level (p < 0.05). A maximum conversion yield of 99.8 % was obtained under the optimized reaction conditions [60 h, 73.7 degreesC, substrate molar ratio of phenethyl alcohol to CA (27.1:1), and weight ratio of enzyme to CA (17.8:1)] established by our statistical method, whereas the experimental conversion yield was 96.6 +/- 2 %.
        
Title: Optimization of lipase-catalyzed glucose ester synthesis in ionic liquids Ha SH, Hiep NM, Lee SH, Koo YM Ref: Bioprocess Biosyst Eng, 33:63, 2010 : PubMed
Lipase-catalyzed esterification of glucose with fatty acids in ionic liquids (ILs) mixture was investigated by using supersaturated glucose solution. The effect of ILs mixture ratio, substrate ratio, lipase content, and temperature on the activity and stability of lipase was also studied. The highest yield of sugar ester was obtained in a mixture of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][TfO]) and 1-methyl-3-octylimidazolium bis[(trifluoromethyl)-sulfonyl]amide ([Omim][Tf(2)N]) with a volume ratio of 9:1, while Novozym 435 (Candida antarctica type B lipase immobilized on acrylic resin) showed the optimal stability and activity in a mixture of [Bmim][TfO] and [Omim][Tf(2)N] with a 1:1 volume ratio. Reuse of lipase and ILs was successfully carried out at the optimized reaction conditions. After 5 times reuse of Novozym 435 and ILs, 78% of initial activity was remained.
        
Title: Lipase-catalyzed synthesis of glucose fatty acid ester using ionic liquids mixtures Lee SH, Ha SH, Hiep NM, Chang WJ, Koo YM Ref: J Biotechnol, 133:486, 2008 : PubMed
Novozym 435-catalyzed synthesis of 6-O-lauroyl-d-glucose in ionic liquids (ILs) was investigated. The highest lipase activity was obtained in water-miscible [Bmim][TfO] which can dissolve high concentration of glucose, while the highest stability of lipase was shown in hydrophobic [Bmim][Tf(2)N]. The optimal activity and stability of lipase could be obtained in [Bmim][TfO] and [Bmim][Tf(2)N] mixture (1:1, v/v). Specifically, the activity of lipase was increased from 1.1 to 2.9 micromolmin(-1)g(-1) by using supersaturated glucose solution in this mixture, compared with reaction using saturated solution. After 5 times reuse of lipase, 86% of initial activity was remained in this mixture, while the residual activity in pure [Bmim][TfO] was 36%. Therefore, the productivity obtained by using ILs mixtures was higher than those in pure ILs.