Lysobacter enzymogenes M497-1 is a producer of commercialized achromopeptidase and is expected to harbour genes encoding various other antimicrobial enzymes. Here, we present the complete sequence of the genome of M497-1 and the expression profiles of the genes for various antimicrobial enzymes. Of the 117 peptidase-encoding genes found in the 6.1-Mb genome of M497-1, 15 genes (aside from the gene encoding the achromopeptidase) were expressed at a level higher than that of the average ribosomal protein genes in the 24-h culture. Thus, the strain was found more valuable than hitherto considered. In addition, M497-1 harbours 98 genes involved in the biosynthesis of various natural products, 16 of which are M497-1-specific across 4 Lysobacter species. A gene cluster starting at LEN_2603 through LEN_2673 among the 98 genes closely resembled the lysobactin biosynthesis gene cluster of Lysobacter sp. ATCC 53042. It is likely that M497-1 may produce lysobactin or related antibacterial compounds. Furthermore, comparative genomic analysis of M497-1 and four other Lysobacter species revealed that their core genome structure comprises 3,737 orthologous groups. Our findings are expected to advance further biotechnological application of Lysobacter spp. as a promising source of natural bioactive compounds.
AIM: To elucidate the correlation between hepatic blood flow and liver function in alcoholic liver cirrhosis (AL-LC). METHODS: The subjects included 35 patients with AL-LC (34 men, 1 woman; mean age, 58.9 +/- 10.7 years; median age, 61 years; range: 37-76 years). All patients were enrolled in this study after obtaining written informed consent. Liver function was measured with tests measuring albumin (Alb), prothrombin time (PT), brain natriuretic peptide (BNP), branched amino acid and tyrosine ratio (BTR), branched chain amino acid (BCAA), tyrosine, ammonia (NH3), cholinesterase (ChE), immunoreactive insulin (IRI), total bile acid (TBA), and the retention rate of indocyanine green 15 min after administration (ICG R15). Hepatic blood flow, hepatic arterial tissue blood flow (HATBF), portal venous tissue blood flow (PVTBF), and total hepatic tissue blood flow (THTBF) were simultaneously calculated using xenon computed tomography. RESULTS: PVTBF, HATBF and THTBF were 30.2 +/- 10.4, 20.0 +/- 10.7, and 50.3 +/- 14.9 mL/100 mL/min, respectively. Alb, PT, BNP, BTR, BCAA, tyrosine, NH3, ChE, IRI, TBA, and ICG R15 were 3.50 +/- 0.50 g/dL, 72.0% +/- 11.5%, 63.2 +/- 56.7 pg/mL, 4.06 +/- 1.24, 437.5 +/- 89.4 mumol/L, 117.7 +/- 32.8 mumol/L, 59.4 +/- 22.7 mug/dL, 161.0 +/- 70.8 IU/L, 12.8 +/- 5.0 mug/dL, 68.0 +/- 51.8 mumol/L, and 28.6% +/- 13.5%, respectively. PVTBF showed a significant negative correlation with ICG R15 (r = -0.468, P <0.01). No significant correlation was seen between ICG 15R, HATBF and THTBF. There was a significant correlation between PVTBF and Alb (r = 0.2499, P < 0.05), and NH3 tended to have an inverse correlation with PVTBF (r = -0.2428, P = 0.0894). There were also many significant correlations between ICG R15 and liver function parameters, including Alb, NH3, PT, BNP, TBA, BCAA, and tyrosine (r = -0.2156, P < 0.05; r = 0.4318, P < 0.01; r = 0.4140, P < 0.01; r = 0.3610, P < 0.05; r = 0.5085, P < 0.001; r = 0.4496, P < 0.01; and r = 0.4740, P < 0.05, respectively). CONCLUSION: Our investigation showed that there is a close correlation between liver function and hepatic blood flow.
PURPOSE: Acetylcholinesterase (AChE) inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered 11C-Donepezil (DNP) and the AChE activity in the normal rat, with special focus on the adrenal glands. METHODS: The distribution of 11C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight = 220+/-8.9 g). A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of 11C-DNP (45.0+/-10.7 MBq). The whole-body distribution of the 11C-DNP PET was evaluated based on the Vt (total distribution volume) by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. RESULTS: The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of 11C-DNP in the body (following the liver) (13.33+/-1.08 and 19.43+/-1.29 ml/cm3, respectively), indicating that the distribution of 11C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach) (24.9+/-1.6, 83.1+/-3.0, and 38.5+/-8.1 mU/mg, respectively), indicating high activity of AChE in the adrenal glands. CONCLUSIONS: We demonstrated the whole-body distribution of 11C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of 11C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors.
        
Title: Construction of a new recombinant protein expression system in the basidiomycetous yeast Cryptococcus sp. strain S-2 and enhancement of the production of a cutinase-like enzyme Masaki K, Tsuchioka H, Hirano T, Kato M, Ikeda H, Iefuji H Ref: Applied Microbiology & Biotechnology, 93:1627, 2012 : PubMed
Yeast host-vector systems have been very successful in expressing recombinant proteins. However, because there are some proteins that cannot be expressed with existing systems, there is a need for new yeast expression systems. Here we describe a new host-vector system based on the basidiomycetous yeast Cryptococcus sp. strain S-2 (S-2). Two advantages of S-2 are that it naturally produces some very useful enzymes, so it would be a good system for expressing multiple copies of some of its genes, and that, it is a nonhazardous species. The orotate phosphoribosyltransferase (OPRTase, EC 2.4.2.10) gene (URA5) was selected as a selectable marker for transformation in the new host-vector system. URA5 was isolated and introduced into a uracil auxotroph of S-2 by electroporation. To demonstrate the S-2 system, we selected one of its unique enzymes, a plastic-degrading cutinase-like enzyme (CLE). We were able to insert multiple copies of the CLE gene (CLE1) into the chromosomes in a high fraction of the targeted cells. Under optimal conditions, one transformant exhibited 3.5 times higher CLE activity than the wild type. Expression vectors, including an inducible promoter (the promoter for the xylanase or alpha-amylase gene), were constructed for recombinant protein production, and green fluorescent protein was expressed under the control of these promoters. The xylanase promoter was more tightly controlled. Furthermore, putting CLE1 under the control of the xylanase promoter, which is induced by xylose, increased CLE activity of the culture medium to approximately 15 times greater than that of the wild type.
Kitasatospora setae NBRC 14216(T) (=KM-6054(T)) is known to produce setamycin (bafilomycin B1) possessing antitrichomonal activity. The genus Kitasatospora is morphologically similar to the genus Streptomyces, although they are distinguishable from each other on the basis of cell wall composition and the 16S rDNA sequence. We have determined the complete genome sequence of K. setae NBRC 14216(T) as the first Streptomycetaceae genome other than Streptomyces. The genome is a single linear chromosome of 8,783,278 bp with terminal inverted repeats of 127,148 bp, predicted to encode 7569 protein-coding genes, 9 rRNA operons, 1 tmRNA and 74 tRNA genes. Although these features resemble those of Streptomyces, genome-wide comparison of orthologous genes between K. setae and Streptomyces revealed smaller extent of synteny. Multilocus phylogenetic analysis based on amino acid sequences unequivocally placed K. setae outside the Streptomyces genus. Although many of the genes related to morphological differentiation identified in Streptomyces were highly conserved in K. setae, there were some differences such as the apparent absence of the AmfS (SapB) class of surfactant protein and differences in the copy number and variation of paralogous components involved in cell wall synthesis.
We determined the complete genome sequence of Streptomyces griseus IFO 13350, a soil bacterium producing an antituberculosis agent, streptomycin, which is the first aminoglycoside antibiotic, discovered more than 60 years ago. The linear chromosome consists of 8,545,929 base pairs (bp), with an average G+C content of 72.2%, predicting 7,138 open reading frames, six rRNA operons (16S-23S-5S), and 66 tRNA genes. It contains extremely long terminal inverted repeats (TIRs) of 132,910 bp each. The telomere's nucleotide sequence and secondary structure, consisting of several palindromes with a loop sequence of 5'-GGA-3', are different from those of typical telomeres conserved among other Streptomyces species. In accordance with the difference, the chromosome has pseudogenes for a conserved terminal protein (Tpg) and a telomere-associated protein (Tap), and a novel pair of Tpg and Tap proteins is instead encoded by the TIRs. Comparisons with the genomes of two related species, Streptomyces coelicolor A3(2) and Streptomyces avermitilis, clarified not only the characteristics of the S. griseus genome but also the existence of 24 Streptomyces-specific proteins. The S. griseus genome contains 34 gene clusters or genes for the biosynthesis of known or unknown secondary metabolites. Transcriptome analysis using a DNA microarray showed that at least four of these clusters, in addition to the streptomycin biosynthesis gene cluster, were activated directly or indirectly by AdpA, which is a central transcriptional activator for secondary metabolism and morphogenesis in the A-factor (a gamma-butyrolactone signaling molecule) regulatory cascade in S. griseus.
        
Title: Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics Masaki K, Kamini NR, Ikeda H, Iefuji H Ref: Applied Environmental Microbiology, 71:7548, 2005 : PubMed
A purified lipase from the yeast Cryptococcus sp. strain S-2 exhibited remote homology to proteins belonging to the cutinase family rather than to lipases. This enzyme could effectively degrade the high-molecular-weight compound polylactic acid, as well as other biodegradable plastics, including polybutylene succinate, poly (epsilon-caprolactone), and poly(3-hydroxybutyrate).
NO-1886 is a lipoprotein lipase (LPL) activator. Administration of NO-1886 results in an increase in plasma high-density lipoprotein cholesterol (HDL-C) and a decrease in plasma triglyceride (TG) levels. The aim of this study was to ascertain whether NO-1886 improves fatty liver caused by high-fat feeding in streptozotocin (STZ)-induced diabetic rats. Administration of NO-1886 resulted in increased plasma HDL-C levels and decreased TG levels without affecting total cholesterol and glucose levels in the diabetic rats. NO-1886 dose-dependently decreased liver TG contents and cholesterol contents, resulting in improvement of fatty liver. NO-1886 also reduced plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) that accompany fatty liver. The liver cholesterol contents were inversely correlated with plasma HDL-C levels (r = -0.5862, P <.001) and were positively correlated with plasma TG levels (r = 0.4083, P <.003). The liver TG contents were inversely correlated with plasma HDL-C levels (r = -0.6195, P <.001) and were positively correlated with plasma TG levels (r = 0.5837, P <.001). There was no correlation between plasma cholesterol levels, and cholesterol and TG contents in liver. These results indicate that reducing plasma TG levels and elevating in HDL-C levels may result in improving fatty liver.
Symbiobacterium thermophilum is an uncultivable bacterium isolated from compost that depends on microbial commensalism. The 16S ribosomal DNA-based phylogeny suggests that this bacterium belongs to an unknown taxon in the Gram-positive bacterial cluster. Here, we describe the 3.57 Mb genome sequence of S.thermophilum. The genome consists of 3338 protein-coding sequences, out of which 2082 have functional assignments. Despite the high G + C content (68.7%), the genome is closest to that of Firmicutes, a phylum consisting of low G + C Gram-positive bacteria. This provides evidence for the presence of an undefined category in the Gram-positive bacterial group. The presence of both spo and related genes and microscopic observation indicate that S.thermophilum is the first high G + C organism that forms endospores. The S.thermophilum genome is also characterized by the widespread insertion of class C group II introns, which are oriented in the same direction as chromosomal replication. The genome has many membrane transporters, a number of which are involved in the uptake of peptides and amino acids. The genes involved in primary metabolism are largely identified, except those that code several biosynthetic enzymes and carbonic anhydrase. The organism also has a variety of respiratory systems including Nap nitrate reductase, which has been found only in Gram-negative bacteria. Overall, these features suggest that S.thermophilum is adaptable to and thus lives in various environments, such that its growth requirement could be a substance or a physiological condition that is generally available in the natural environment rather than a highly specific substance that is present only in a limited niche. The genomic information from S.thermophilum offers new insights into microbial diversity and evolutionary sciences, and provides a framework for characterizing the molecular basis underlying microbial commensalism.
Species of the genus Streptomyces are of major pharmaceutical interest because they synthesize a variety of bioactive secondary metabolites. We have determined the complete nucleotide sequence of the linear chromosome of Streptomyces avermitilis. S. avermitilis produces avermectins, a group of antiparasitic agents used in human and veterinary medicine. The genome contains 9,025,608 bases (average GC content, 70.7%) and encodes at least 7,574 potential open reading frames (ORFs). Thirty-five percent of the ORFs (2,664) constitute 721 paralogous families. Thirty gene clusters related to secondary metabolite biosynthesis were identified, corresponding to 6.6% of the genome. Comparison with Streptomyces coelicolor A3(2) revealed that an internal 6.5-Mb region in the S. avermitilis genome was highly conserved with respect to gene order and content, and contained all known essential genes but showed perfectly asymmetric structure at the oriC center. In contrast, the terminal regions were not conserved and preferentially contained nonessential genes.
Impairment of endothelium-derived nitric oxide (EDNO) has been demonstrated in patients with coronary risk factors in some studies, as well as impaired platelet-derived nitric oxide (PDNO) in other studies. However, no study has examined whether these impairments coexist. In 24 patients with coronary risk factors, femoral vascular endothelial function was assessed with acetylcholine (ACh: 50, 100, 200 and 400 microg/min) and endothelium-independent vascular function with nitroglycerin (NTG; 50, 100, 200 microg/min) using a Doppler flow-wire technique, as well as ADP (5 micromol/L)-induced PDNO release with an NO-specific electrode. The ACh-mediated percent change in femoral vascular resistance index (% change of FVRI) and PDNO release had a significant correlation with the number of risk factors. The ACh-mediated % change of FVRI, but not that with NTG, significantly correlated with the PDNO release. Both EDNO and PDNO bioactivities are impaired in patients with coronary risk factors and there is a common mechanism.
Streptomyces avermitilis is a soil bacterium that carries out not only a complex morphological differentiation but also the production of secondary metabolites, one of which, avermectin, is commercially important in human and veterinary medicine. The major interest in this genus Streptomyces is the diversity of its production of secondary metabolites as an industrial microorganism. A major factor in its prominence as a producer of the variety of secondary metabolites is its possession of several metabolic pathways for biosynthesis. Here we report sequence analysis of S. avermitilis, covering 99% of its genome. At least 8.7 million base pairs exist in the linear chromosome; this is the largest bacterial genome sequence, and it provides insights into the intrinsic diversity of the production of the secondary metabolites of Streptomyces. Twenty-five kinds of secondary metabolite gene clusters were found in the genome of S. avermitilis. Four of them are concerned with the biosyntheses of melanin pigments, in which two clusters encode tyrosinase and its cofactor, another two encode an ochronotic pigment derived from homogentiginic acid, and another polyketide-derived melanin. The gene clusters for carotenoid and siderophore biosyntheses are composed of seven and five genes, respectively. There are eight kinds of gene clusters for type-I polyketide compound biosyntheses, and two clusters are involved in the biosyntheses of type-II polyketide-derived compounds. Furthermore, a polyketide synthase that resembles phloroglucinol synthase was detected. Eight clusters are involved in the biosyntheses of peptide compounds that are synthesized by nonribosomal peptide synthetases. These secondary metabolite clusters are widely located in the genome but half of them are near both ends of the genome. The total length of these clusters occupies about 6.4% of the genome.
        
Title: Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Ikeda H, Nonomiya T, Usami M, Ohta T, Omura S Ref: Proceedings of the National Academy of Sciences of the United States of America, 96:9509, 1999 : PubMed
Title: Lack of abnormality in aromatic amines in rats and mice susceptible to audiogenic seizure McGeer EG, Ikeda H, Asakura T, Wada JA Ref: Journal of Neurochemistry, 16:945, 1969 : PubMed