Lung cancer is a major cause of cancer-related death in the developed countries and the overall survival rate has still an extremely poor. Cigarette smoking is an established risk factor for lung cancer although a possible role for genetic susceptibility in the development of lung cancer has been inferred from familial clustering of the disease and segregation analyzes. Everyone may have a unique combination of polymorphic traits that modify genetic susceptibility and response to drugs, chemicals and carcinogens. Developments in molecular biology have led to growing interest in investigation of biological markers, which may increase predisposition to lung carcinogenesis. Therefore, the high-risk genotype of an individual could be determined easily. As there are the great number of carcinogen-activating and -detoxifying enzymes, the variation in their expression and the complexity of exposures to tobacco carcinogens, the existence of multiple alleles at loci of those enzymes may result in differential susceptibilities of individuals. This review summarize data addressing the relationships of lung cancer to markers of genetic susceptibility genes, including metabolic polymorphisms other than well-investigated cytochrome P450s or glutathione S-transferases, DNA repair genes and the p53 tumor suppressor gene. Among genetic polymorphisms reviewed here, myeloperoxidase gene (a G to A mutation) and microsomal epoxide hydrolase exon 4 polymorphism (substitution of Arg for His) were significantly associated with lung cancer risk. As lung cancer is a multifactorial disease, an improved understanding of the interplay of environmental and genetic polymorphisms at multiple loci may help identify individuals who are at increased risk for lung cancer. Hopefully, in the future we will be able to screen for lung cancer susceptibility by using specific biomarkers.
The platelet-activating factor (PAF) represents a phospholipid with complex biological functions, including involvement in inflammatory processes. The degrading enzyme PAF acetylhydrolase (PAFAH) represents a candidate for asthma and other atopic diseases. Two loss-of-function mutations of PAFAH are associated with severe asthma in Japanese individuals. Our aim was to look for further PAFAH variants in white populations, their possible association with atopic and asthmatic phenotypes, and their functional importance. We picked up three common variants in the PAFAH gene: Arg92His (exon 4), Ile198Thr (exon 7), and Ala379Val (exon 11). The known loss-of-function mutations were not seen. The variant allele Thr198 was found to be highly associated with total IgE concentrations in an atopic population (P=.009) and with "atopic asthma" in an asthmatic population (P=.008). The variant allele Val379 was found to be highly associated with "specific sensitization" in the atopic population (P=.002) and with "asthma" in the asthmatic population (P=.003). By use of recombinant PAFAH enzymes, the variant Val379 showed increased (14 microM) and Thr198 markedly increased (42 microM) KM values compared to the wild type (7 microM); furthermore, Vmax of Val379 was highly increased (132%). Thr198 and Val379 influence plasmatic PAFAH toward lower substrate affinities and therefore are very likely to prolong the activities of PAF. At the same time, they are associated with an increased risk to develop asthma and atopy. Thus, two PAFAH variants seem to play a key role in atopic and asthmatic processes in Caucasian populations.
        
Title: Prostaglandin content of particulate and superntant fractions of rabbit brain homogenates Hopkin JM, Horton EW, Whittaker VP Ref: Nature, 217:71, 1968 : PubMed