A large number of gene products that are enriched in the striatum have ill-defined functions, although they may have key roles in age-dependent neurodegenerative diseases affecting the striatum, especially Huntington disease (HD). In the present study, we focused on Abhd11os, (called ABHD11-AS1 in human) which is a putative long noncoding RNA (lncRNA) whose expression is enriched in the mouse striatum. We confirm that despite the presence of 2 small open reading frames (ORFs) in its sequence, Abhd11os is not translated into a detectable peptide in living cells. We demonstrate that Abhd11os levels are markedly reduced in different mouse models of HD. We performed in vivo experiments in mice using lentiviral vectors encoding either Abhd11os or a small hairpin RNA targeting Abhd11os. Results show that Abhd11os overexpression produces neuroprotection against an N-terminal fragment of mutant huntingtin, whereas Abhd11os knockdown is protoxic. These novel results indicate that the loss lncRNA Abhd11os likely contribute to striatal vulnerability in HD. Our study emphasizes that lncRNA may play crucial roles in neurodegenerative diseases.
The sinoatrial (SA) node is the cardiac pacemaker and changes in its adrenergic-muscarinic phenotype have been postulated as a determinant of age-associated modifications in heart rate variability. To address this question, right atria were microdissected, the SA node area was identified by acetylcholinesterase staining, and, using a RT-PCR method, the accumulation of mRNA molecules encoding beta1- and beta2-adrenergic (beta1- and beta2-AR) and muscarinic (M2-R) receptor was quantified to define the proportion between beta-AR and M2-R mRNAs within the sinoatrial area of adult (3 months) and senescent (24 months) individual rat hearts. In adult hearts, the highest M2-R/beta-AR mRNA ratio was observed within the sinoatrial area compared with adjacent atrial myocardium, while in the senescent hearts, no difference was observed between sinoatrial and adjacent areas. This change was specific of the sinoatrial area since adult and senescent whole atrial or ventricular myocardium did not differ in their M2-R/beta-AR mRNA ratio, and was associated with a fragmentation of acetylcholinesterase staining of the senescent SA node. Quantitative changes in the expression of genes encoding proteins involved in heart rate regulation specifically affect the sinoatrial area of the senescent heart.