Donepezil, an acetylcholinesterase inhibitor, induces only moderate symptomatic effects on memory in Alzheimer's disease patients. An alternative strategy for treatment of cognitive symptoms could be to act simultaneously on both histaminergic and cholinergic pathways, to create a synergistic effect. To that aim, 14 month old C57/Bl6 mice were administered per oesophagy during nine consecutive days with Donepezil (at 0.1 and 0.3 mg/kg) and S 38093 (at 0.1, 0.3, and 1.0 mg/kg), a H3 histaminergic antagonist developed by Servier, alone or in combination and tested for memory in a contextual memory task that modelized the age-induced memory dysfunction. The present study shows that the combination of Donepezil and S 38093 induced a dose-dependent synergistic memory-enhancing effect in middle-aged mice with a statistically higher size of effect never obtained with compounds alone and without any pharmacokinetic interaction between both compounds. We demonstrated that the memory-enhancing effect of the S 38093 and Donepezil combination is mediated by its action on the septo-hippocampal circuitry, since it canceled out the reduction of CREB phosphorylation (pCREB) observed in these brain areas in vehicle-treated middle-aged animals. Overall, the effects of drug combinations on pCREB in the hippocampus indicate that the synergistic promnesiant effects of the combination on memory performance in middle-aged mice stem primarily from an enhancement of neural activity in the septo-hippocampal system.
Tumor-derived exosomes mediate tumorigenesis by facilitating tumor growth, metastasis, development of drug resistance, and immunosuppression. However, little is known about the exosomes isolated from bronchoalveolar lavage (BAL) in patients with lung neoplasm. Exosomes isolated in plasma and BAL from 30 and 75 patients with tumor and nontumor pathology were quantified by acetylcholinesterase activity and characterized by Western Blot, Electron Microscopy, and Nanoparticle Tracking Analysis. Differences in exosome cargo were analyzed by miRNA quantitative PCR in pooled samples and validated in a second series of patients. More exosomes were detected in plasma than in BAL in both groups (P < 0.001). The most miRNAs evaluated by PCR array were detected in tumor plasma, tumor BAL, and nontumor BAL pools, but only 56% were detected in the nontumor plasma pool. Comparing the top miRNAs with the highest levels detected in each pool, we found close homology only between the BAL samples of the two pathologies. In tumor plasma, we found a higher percentage of miRNAs with increased levels than in tumor BAL or in nontumor plasma. The data reveal differences between BAL and plasma exosome amount and miRNA content. (c) 2014 Wiley Periodicals, Inc.