High-throughput (HT) protein crystallography is severely impeded by the relatively low success rate of protein crystallization. Proteins whose structures are not solved in the HT pipeline owing to attrition in any phase of the project are referred to as the high-hanging fruit, in contrast to those proteins that yielded good-quality crystals and crystal structures, which are referred to as low-hanging fruit. It has previously been shown that proteins that do not crystallize in the wild-type form can have their surfaces engineered by site-directed mutagenesis in order to create patches of low conformational entropy that are conducive to forming intermolecular interactions. The application of this method to selected proteins from the Bacillus subtilis genome which failed to crystallize in the HT mode is now reported. In this paper, the crystal structure of the product of the YdeN gene is reported. Of three prepared double mutants, i.e. E124A/K127A, E167A/E169A and K88A/Q89A, the latter gave high-quality crystals and the crystal structure was solved by SAD at 1.8 angstroms resolution. The protein is a canonical alpha/beta hydrolase, with an active site that is accessible to solvent.
Brefeldin A esterase (BFAE), a detoxifying enzyme isolated from Bacillus subtilis, hydrolyzes and inactivates BFA, a potent fungal inhibitor of intracellular vesicle-dependent secretory transport and poliovirus RNA replication. We have solved the crystal structure of BFAE and we discovered that the previously reported amino acid sequence was in serious error due to frame shifts in the cDNA sequence. The correct sequence, inferred from the experimentally phased electron density map, revealed that BFAE is a homolog of the mammalian hormone sensitive lipase (HSL). It is a canonical alpha/beta hydrolase with two insertions forming the substrate binding pocket. The enzyme contains a lipase-like catalytic triad, Ser 202, Asp 308 and His 338, consistent with mutational studies that implicate the homologous Ser 424, Asp 693 and His 723 in the catalytic triad in human HSL.
        
Title: Structure-Function Relationships in High Molecular Weight PAF-Acetylhydrolases from the Studies of a Microbial alpha/beta Hydrolase Derewenda Z, Wei Y, Derewenda U Ref: In: Structure and Function of Cholinesterases and Related Proteins - Proceedings of Sixth International Meeting on Cholinesterases, (Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. Eds) Plenum Publishing Corp.:309, 1998 : PubMed
Title: The structure and function of platelet-activating factor acetylhydrolases Derewenda ZS, Derewenda U Ref: Cell Mol Life Sciences, 54:446, 1998 : PubMed
Platelet-activating factor acetylhydrolases (PAF-AHs, EC 3.1.1.47) constitute a unique and biologically important family of phospholipase A2s. They are related to neither the well-characterized secretory nor cytosolic PLA2s, and unlike them do not require Ca2+ for catalytic activity. The distinguishing property of PAF-AHs is their unique substrate specificity: they act on the phospholipid platelet-activating factor (PAF), and in some cases on proinflammatory polar phospholipids, from which they remove a short acyl moiety--acetyl in the case of PAF--located at the sn-2 position. Because PAF is found both in the plasma and in the cytosol of many tissues, PAF-acetylhydrolases are equally widely distributed in an animal organism. Recent crystallographic studies shed new light on the complex structure-function relationships in PAF-AHs.
Neutral lipases are ubiquitous and diverse enzymes. The molecular architecture of the structurally characterized lipases is similar, often despite a lack of detectable homology at the sequence level. Some of the microbial lipases are evolutionarily related to physiologically important mammalian enzymes. For example, limited sequence similarities were recently noted for the Streptomyces exfoliatus lipase (SeL) and two mammalian platelet-activating factor acetylhydrolases (PAF-AHs). The determination of the crystal structure of SeL allowed us to explore the structure-function relationships in this novel family of homologous hydrolases.
RESULTS:
The crystal structure of SeL was determined by multiple isomorphous replacement and refined using data to 1.9 A resolution. The molecule exhibits the canonical tertiary fold of an alpha/beta hydrolase. The putative nucleophilic residue, Ser131, is located within a nucleophilic elbow and is hydrogen bonded to His209, which in turn interacts with Asp177. These three residues create a triad that closely resembles the catalytic triads found in the active sites of other neutral lipases. The mainchain amides of Met132 and Phe63 are perfectly positioned to create an oxyanion hole. Unexpectedly, there are no secondary structure elements that could render the active site inaccessible to solvent, like the lids that are commonly found in neutral lipases.
CONCLUSIONS:
The crystal structure of SeL reinforces the notion that it is a homologue of the mammalian PAF-AHs. We have used the catalytic triad in SeL to model the active site of the PAF-AHs. Our model is consistent with the site-directed mutagenesis studies of plasma PAF-AH, which implicate Ser273, His351 and Asp296 in the active site. Our study therefore provides direct support for the hypothesis that the plasma and isoform II PAF-AHs are triad-containing alpha/beta hydrolases.
The platelet-activating factor PAF (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a potent lipid first messenger active in general cell activation, fertilization, inflammatory and allergic reactions, asthma, HIV pathogenesis, carcinogenesis, and apoptosis. There is substantial evidence that PAF is involved in intracellular signalling, but the pathways are poorly understood. Inactivation of PAF is carried out by specific intra- and extracellular acetylhydrolases (PAF-AHs), a subfamily of phospholipases A2 that remove the sn-2 acetyl group. Mammalian brain contains at least three intracellular isoforms, of which PAF-AH(Ib) is the best characterized. This isoform contains a heterodimer of two homologous catalytic subunits alpha1 and alpha2, each of relative molecular mass 26K, and a non-catalytic 45K beta-subunit, a homologue of the beta-subunit of trimeric G proteins. We now report the crystal structure of the bovine alpha1 subunit of PAF-AH(Ib) at 1.7 A resolution in complex with a reaction product, acetate. The tertiary fold of this protein is closely reminiscent of that found in p21(ras) and other GTPases. The active site is made up of a trypsin-like triad of Ser 47, His 195 and Asp 192. Thus, the intact PAF-AH(Ib) molecule is an unusual G-protein-like (alpha1/alpha2)beta trimer.
The extracellular lipase from Penicillium camembertii has unique substrate specificity restricted to mono- and diglycerides. The enzyme is a member of a homologous family of lipases from filamentous fungi. Four of these proteins, from the fungi Rhizomucor miehei, Humicola lanuginosa, Rhizopus delemar and P. camembertii, have had their structures elucidated by X-ray crystallography. In spite of pronounced sequence similarities the enzymes exhibit significant differences. For example, the thermostability of the P. camembertii lipase is considerably lower than that of the H. lanuginosa enzyme. Since only the P. camembertii enzyme lacks the characteristic long disulfide bridge, corresponding to Cys22-Cys268 in the H. lanuginosa lipase, we have engineered this disulfide into the former enzyme in the hope of obtaining a significantly more stable fold. The properties of the double mutant (Y22C and G269C) were assessed by a variety of biophysical techniques. The extra disulfide link was found to increase the melting temperature of the protein from 51 to 63 degrees C. However, no difference is observed under reducing conditions, indicating an intrinsic instability of the new disulfide. The optimal temperature for catalytic activity decreased by 10 degrees C and the optimum pH was shifted by 0.7 units to more acidic.
        
Title: The occurrence of C-H...O hydrogen bonds in proteins Derewenda ZS, Lee L, Derewenda U Ref: Journal of Molecular Biology, 252:248, 1995 : PubMed
Hydrogen bonds are a major feature of protein structure. By a generally accepted definition, they occur whenever a proton is shared by two electronegative atoms. Hence, only hydrogens bonded to nitrogen and oxygen atoms are usually considered in analyses of protein hydrogen bond networks. However, X-ray and neutron diffraction studies have shown that crystals of various organic compounds exhibit close C-H...X contacts (where X is an electronegative atom, in most cases oxygen) which show all the stereochemical hallmarks of hydrogen bonds. In this work, we describe an analysis of short C-H...O interactions in a sample of known protein structures representing different categories of tertiary folds and refined at a resolution of at least 2 A. Although our analysis is based on the calculated coordinates of hydrogen atoms, its results are statistically significant: we find strong evidence that a large percentage of short C...O contacts constitute cohesive interactions. Moreover, the stereochemical study of C-H...O = C contacts, in which the orientation of free electron orbitals on the acceptor oxygen atom can be predicted, reveals that these interactions exhibit stereochemical features typical of hydrogen bonds. Among the hydrogen atoms involved in these contacts, the most common are those bonded to alpha carbon. This is consistent with the fact that these hydrogens are more acidic than others. We describe four different categories of C-H...O = C bonds. Those found between C alpha-H groups and main chain oxygens in adjacent strands of beta sheets are the most ubiquitous. Our results call for a revision of crystallographic restrained refinement programs which treat close carbon-oxygen contacts as purely repulsive; they may also have implications for the understanding of some enzymatic reaction mechanisms.
The crystal structure of a novel esterase from Streptomyces scabies, a causal agent of the potato scab disease, was solved at 2.1 A resolution. The tertiary fold of the enzyme is substantially different from that of the alpha/beta hydrolase family and unique among all known hydrolases. The active site contains a dyad of Ser 14 and His 283, closely resembling two of the three components of typical Ser-His-Asp(Glu) triads from other serine hydrolases. Proper orientation of the active site imidazol is maintained by a hydrogen bond between the N delta-H group and a main chain oxygen. Thus, the enzyme constitutes the first known natural variation of the chymotrypsin-like triad in which a carboxylic acid is replaced by a neutral hydrogen-bond acceptor.
        
Title: Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar Derewenda U, Swenson L, Wei Y, Green R, Kobos PM, Joerger R, Haas MJ, Derewenda ZS Ref: J Lipid Res, 35:524, 1994 : PubMed
Considerable controversy exists regarding the exact nature of the molecular mechanism of interfacial activation, a process by which most lipases achieve maximum catalytic activity upon adsorption to an oil water interface. X-ray crystallographic studies show that lipases contain buried active centers and that displacements of entire secondary structure elements, or "lids," take place when the enzymes assume active conformations [Derewenda, U., A. M. Brzozowski, D. M. Lawson, and Z. S. Derewenda. 1992. Biochemistry: 31: 1532-1541; van Tilbeurgh, H., M-P. Egloff, C. Martinez, N. Rugani, R. Verger, and C. Cambillau. 1993. Nature: 362: 814-820; Grochulski, P., L. Yunge, J. D. Schrag, F. Bouthillier, P. Smith, D. Harrison, B. Rubin, and M. Cygler. 1993. J. Biol. Chem. 268: 12843-12847]. A simple two-state model inferred from these results implies that the "closed" conformation is stable in an aqueous medium, rendering the active centers inaccessible to water soluble substrates. We now report that in crystals of the Humicola lanuginosa lipase the "lid" is significantly disordered irrespective of the ionic strength of the medium, while in a related enzyme from Rhizopus delemar, crystallized in the presence of a detergent, the two molecules that form the asymmetric unit show different "lid" conformations. These new results call into question the simplicity of the "enzyme theory" of interfacial activation.
        
Title: (His)C epsilon-H...O=C < hydrogen bond in the active sites of serine hydrolases Derewenda ZS, Derewenda U, Kobos PM Ref: Journal of Molecular Biology, 241:83, 1994 : PubMed
Close interactions of the C-H...O type are known to occur in a variety of organic crystals, although it had been often argued that they do not represent true hydrogen bonds. During an extensive comparative study of all structurally characterized serine hydrolases containing an Asp(Glu)-His-Ser catalytic triad at their active centers (i.e. serine proteinases, lipases, acetylcholinesterase and a thioesterase), we have discovered that the C epsilon 1 atom of the active site histidine is invariably in a close contact with a carbonyl oxygen. The stereochemistry of these contacts suggests a cohesive, predominantly electrostatic interaction, fully consistent with the requirements imposed by the generally accepted definition of a hydrogen bond. A study of a sample of protein structures refined at high resolution revealed that similar hydrogen bonds involving (His) C epsilon 1-H are found in approximately 15% of non-active site histidine residues. The ubiquitous occurrence of this hitherto underestimated contact in the active sites of serine hydrolases suggests functional significance. We propose that the (His)C epsilon 1-H...O=C bond affects the charge distribution within the imidazolium ion so as to weaken the N epsilon 2-H bond, thereby facilitating general acid catalysis by the active site histidine during both the acylation and deacylation steps of hydrolysis.
Lipases from filamentous fungi have been studied extensively over many years. They exhibit properties attractive for industrial applications, e.g. in laundry detergents, tanning and paper industries and stereospecific organic synthesis. Enzymes from the fungi Rhizomucor miehei and Geotrichum candidum have been among the first neutral lipases to be characterized structurally by X-ray diffraction methods. In this paper we report a preliminary account of crystallographic studies of three other fungal lipases homologous to that from R. miehei and obtained from Humicola lanuginosa, Penicillium camembertii and Rhizopus delemar. These newly characterized structures have important implications for our understanding of structure-function relationships in lipases in general and the molecular basis of interfacial activation.
The crystal structure of the 32-kDa catalytic domain of the Streptomyces lividans xylanase A was solved by molecular isomorphous replacement methods and subsequently refined at 2.6-A resolution to a conventional crystallographic R factor of 0.21. This is the first successful structure determination of a member of the F family of endo-beta-1,4-D-glycanases. Unlike the recently determined xylanases of the G family (Wakarchuk, W. W., Campbell, R. L., Sung, W. L., Davoodi, J., and Yaguchi, M. (1994) Protein Sci. 3, 467-475), where the catalytic domains have a unique beta-sheet structure, the 32-kDa domain of the S. lividans xylanase A is folded into a complete (alpha/beta)8 barrel, the first such fold observed among beta-1,4-D-glycanases. The active site is located at the carbonyl end of the beta barrel. The crystal structure supports the earlier assignment of Glu-128 and Glu-236 as the catalytic amino acids (Moreau, A., Roberge, M., Manin, C., Shareck, F., Kluepfel, D., and Morosoli, R. (1994) Biochem. J., in press).
The stability of globular proteins arises largely from the burial of non-polar amino acids in their interior. These residues are efficiently packed to eliminate energetically unfavorable cavities. Contrary to these observations, high resolution X-ray crystallographic analyses of four homologous lipases from filamentous fungi reveal an alpha/beta fold which contains a buried conserved constellation of charged and polar side chains with associated cavities containing ordered water molecules. It is possible that this structural arrangement plays an important role in interfacial catalysis.
The crystal structure of a myristoyl acyl carrier protein specific thioesterase (C14ACP-TE) from a bioluminescent bacterium, Vibrio harveyi, was solved by multiple isomorphous replacement methods and refined to an R factor of 22% at 2.1-A resolution. This is the first elucidation of a three-dimensional structure of a thioesterase. The overall tertiary architecture of the enzyme resembles closely the consensus fold of the rapidly expanding superfamily of alpha/beta hydrolases, although there is no detectable homology with any of its members at the amino acid sequence level. Particularly striking similarity exists between the C14ACP-TE structure and that of haloalkane dehalogenase from Xanthobacter autotrophicus. Contrary to the conclusions of earlier studies [Ferri, S. R., & Meighen, E. A. (1991) J. Biol. Chem. 266, 12852-12857] which implicated Ser77 in catalysis, the crystal structure of C14ACP-TE reveals a lipase-like catalytic triad made up of Ser114, His241, and Asp211. Surprisingly, the gamma-turn with Ser114 in a strained secondary conformation (phi = 53 degrees, psi = -127 degrees), characteristic of the so-called nucleophilic elbow, does not conform to the frequently invoked lipase/esterase consensus sequence (Gly-X-Ser-X-Gly), as the positions of both glycines are occupied by larger amino acids. Site-directed mutagenesis and radioactive labeling support the catalytic function of Ser114. Crystallographic analysis of the Ser77-->Gly mutant at 2.5-A resolution revealed no structural changes; in both cases the loop containing the residue in position 77 is disordered.
A neutral lipase from the filamentous fungus Rhizopus delemar has been crystallized in both its proenzyme and mature forms. Although the latter crystallizes readily and produces a variety of crystal forms, only one was found to be suitable for X-ray studies. It is monoclinic (C2, a = 92.8 A, b = 128.9 A, c = 78.3 A, beta = 135.8) with two molecules in the asymmetric unit related by a noncrystallographic diad. The prolipase crystals are orthorhombic (P2(1)2(1)2(1), with a = 79.8 A, b = 115.2 A, c = 73.0 A) and also contain a pair of molecules in the asymmetric unit. Initial results of molecular replacement calculations using the refined coordinates of the related lipase from Rhizomucor miehei identified the correct orientations and positions of the protein molecules in the unit cells of crystals of both proenzyme and the mature form.
The crystal structure of an extracellular triglyceride lipase (from a fungus Rhizomucor miehei) inhibited irreversibly by diethyl p-nitrophenyl phosphate (E600) was solved by X-ray crystallographic methods and refined to a resolution of 2.65 A. The crystals are isomorphous with those of n-hexylphosphonate ethyl ester/lipase complex [Brzozowski, A. M., Derewenda, U., Derewenda, Z. S., Dodson, G. G., Lawson, D. M., Turkenburg, J. P., Bjorkling, F., Huge-Jensen, B., Patkar, S. A., & Thim, L. (1991) Nature 351, 491-494], where the conformational change was originally observed. The higher resolution of the present study allowed for a detailed analysis of the stereochemistry of the change observed in the inhibited enzyme. The movement of a 15 amino acid long "lid" (residues 82-96) is a hinge-type rigid-body motion which transports some of the atoms of a short alpha-helix (residues 85-91) by over 12 A. There are two hinge regions (residues 83-84 and 91-95) within which pronounced transitions of secondary structure between alpha and beta conformations are caused by dramatic changes of specific conformational dihedral angles (phi and psi). As a result of this change a hydrophobic area of ca. 800 A2 (8% of the total molecule surface) becomes exposed. Other triglyceride lipases are also known to have "lids" similar to the one observed in the R. miehei enzyme, and it is possible that the general stereochemistry of lipase activation at the oil-water interfaces inferred from the present X-ray study is likely to apply to the entire family of lipases.
        
Title: The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution Derewenda ZS, Derewenda U, Dodson GG Ref: Journal of Molecular Biology, 227:818, 1992 : PubMed
The crystal and molecular structure of a triacylglyceride lipase (EC 3.1.1.3) from the fungus Rhizomucor miehei was analyzed using X-ray single crystal diffraction data to 1.9 A resolution. The structure was refined to an R-factor of 0.169 for all available data. The details of the molecular architecture and the crystal structure of the enzyme are described. A single polypeptide chain of 269 residues is folded into a rather unusual singly wound beta-sheet domain with predominantly parallel strands, connected by a variety of hairpins, loops and helical segments. All the loops are right-handed, creating an uncommon situation in which the central sheet is asymmetric in that all the connecting fragments are located on one side of the sheet. A single N-terminal alpha-helix provides the support for the other, distal, side of the sheet. Three disulfide bonds (residues 29-268, 40-43, 235-244) stabilize the molecule. There are four cis peptide bonds, all of which precede proline residues. In all, 230 ordered water molecules have been identified; 12 of them have a distinct internal character. The catalytic center of the enzyme is made up of a constellation of three residues (His257, Asp203 and Ser144) similar in structure and function to the analogous (but not homologous) triad found in both of the known families of serine proteinases. The fourth residue in this system equivalent to Thr/Ser in proteinases), hydrogen bonded to Asp, is Tyr260. The catalytic site is concealed under a short amphipatic helix (residues 85 to 91), which acts as "lid", opening the active site when the enzyme is adsorbed at the oil-water interface. In the native enzyme the "lid" is held in place by hydrophobic interactions.
Lipases are hydrolytic enzymes which break down triacylglycerides into free fatty acids and glycerols. They have been classified as serine hydrolases owing to their inhibition by diethyl p-nitrophenyl phosphate. Lipase activity is greatly increased at the lipid-water interface, a phenomenon known as interfacial activation. X-ray analysis has revealed the atomic structures of two triacylglycerol lipases, unrelated in sequence: the human pancreatic lipase (hPL)4, and an enzyme isolated from the fungus Rhizomucor (formerly Mucor) miehei (RmL). In both enzymes the active centres contain structurally analogous Asp-His-Ser triads (characteristic of serine proteinases), which are buried completely beneath a short helical segment, or 'lid'. Here we present the crystal structure (at 3 A resolution) of a complex of R. miehei lipase with n-hexylphosphonate ethyl ester in which the enzyme's active site is exposed by the movement of the helical lid. This movement also increases the nonpolarity of the surface surrounding the catalytic site. We propose that the structure of the enzyme in this complex is equivalent to the activated state generated by the oil-water interface.
        
Title: Relationships among serine hydrolases: evidence for a common structural motif in triacylglyceride lipases and esterases Derewenda ZS, Derewenda U Ref: Biochemistry & Cell Biology, 69:842, 1991 : PubMed
A detailed analysis of the highly refined (1.9 A resolution) molecular model of the fungal (Rhizomucor miehei) triglyceride lipase reveals a unique conformation of the oligopeptide containing the active serine (Ser 144) residue. It consists of a six-residue beta-strand (strand 4 of the central sheet), a four-residue turn of type II' with serine in the epsilon conformation, and a buried alpha-helix packed in a parallel way against strands 4 and 5 of the central beta-pleated sheet. It is shown that the invariant glycines in positions (1) and (5) of the so-called lipase consensus sequence (G-X-S-X-G) are in extended and helical conformations, respectively, and that they are conserved owing to the steric restrictions imposed on these residues by the packing stereochemistry of this beta-epsilon Ser-alpha motif, and not by secondary structure requirements, as is the case in serine proteinases. Sequence homologies indicate that this unique motif is likely to be found in serine esterases and other lipases, indicating a possible evolutionary link of these families of hydrolytic enzymes.