ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease is the most common form of dementia, but its treatment options remain few and ineffective. To find new therapeutic strategies, natural products have gained interest due to their neuroprotective potential, being able to target different pathological hallmarks associated with this disorder. Several plant species are traditionally used due to their empirical neuroprotective effects and it is worth to explore their mechanism of action. AIM OF THE STUDY: This study intended to explore the neuroprotective potential of seven traditional medicinal plants, namely Scutellaria baicalensis, Ginkgo biloba, Hypericum perforatum, Curcuma longa, Lavandula angustifolia, Trigonella foenum-graecum and Rosmarinus officinalis. The safety assessment with reference to pesticides residues was also aimed. MATERIALS AND METHODS: Decoctions prepared from these species were chemically characterized by HPLC-DAD and screened for their ability to scavenge four different free radicals (DPPH(), ABTS()(+), O(2)()() and ()NO) and to inhibit enzymes related to neurodegeneration (cholinesterases and glycogen synthase kinase-3beta). Cell viability through MTT assay was also evaluated in two different brain cell lines, namely non-tumorigenic D3 human brain endothelial cells (hCMEC/D3) and NSC-34 motor neurons. Furthermore, and using GC, 21 pesticides residues were screened. RESULTS: Regarding chemical composition, chromatographic analysis revealed the presence of several flavonoids, phenolic acids, curcuminoids, phenolic diterpenoids, one alkaloid and one naphthodianthrone in the seven decoctions. All extracts were able to scavenge free radicals and were moderate glycogen synthase kinase-3beta inhibitors; however, they displayed weak to moderate acetylcholinesterase and butyrylcholinesterase inhibition. G. biloba and L. angustifolia decoctions were the less cytotoxic to hCMEC/D3 and NSC-34 cell lines. No pesticides residues were detected. CONCLUSIONS: The results extend the knowledge on the potential use of plant extracts to combat multifactorial disorders, giving new insights into therapeutic avenues for Alzheimer's disease.
Multitarget-directed ligands (MTDLs) are considered a promising therapeutic strategy to address the multifactorial nature of Alzheimer's disease (AD). Novel MTDLs have been designed as inhibitors of human acetylcholinesterases/butyrylcholinesterases, monoamine oxidase A/B, and glycogen synthase kinase 3beta and as calcium channel antagonists via the Biginelli multicomponent reaction. Among these MTDLs, (+/-)-BIGI-3h was identified as a promising new hit compound showing in vitro balanced activities toward the aforementioned recognized AD targets. Additional in vitro studies demonstrated antioxidant effects and brain penetration, along with the ability to inhibit the aggregation of both tau protein and beta-amyloid peptide. The in vivo studies have shown that (+/-)-BIGI-3h (10 mg/kg intraperitoneally) significantly reduces scopolamine-induced cognitive deficits.
Starting from six potential hits identified in a virtual screening campaign directed to a cryptic pocket of BACE-1, at the edge of the catalytic cleft, we have synthesized and evaluated six hybrid compounds, designed to simultaneously reach BACE-1 secondary and catalytic sites and to exert additional activities of interest for Alzheimer's disease (AD). We have identified a lead compound with potent in vitro activity towards human BACE-1 and cholinesterases, moderate Abeta42 and tau antiaggregating activity, and brain permeability, which is nontoxic in neuronal cells and zebrafish embryos at concentrations above those required for the in vitro activities. This compound completely restored short- and long-term memory in a mouse model of AD (SAMP8) relative to healthy control strain SAMR1, shifted APP processing towards the non-amyloidogenic pathway, reduced tau phosphorylation, and increased the levels of synaptic proteins PSD95 and synaptophysin, thereby emerging as a promising disease-modifying, cognition-enhancing anti-AD lead.
The combination of the scaffolds of the cholinesterase inhibitor huprine Y and the antioxidant capsaicin results in compounds with nanomolar potencies toward human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that retain or improve the antioxidant properties of capsaicin. Crystal structures of their complexes with AChE and BChE revealed the molecular basis for their high potency. Brain penetration was confirmed by biodistribution studies in C57BL6 mice, with one compound (5i) displaying better brain/plasma ratio than donepezil. Chronic treatment of 10 month-old APP/PS1 mice with 5i (2 mg/kg, i.p., 3 times per week, 4 weeks) rescued learning and memory impairments, as measured by three different behavioral tests, delayed the Alzheimer-like pathology progression, as suggested by a significantly reduced Abeta42/Abeta40 ratio in the hippocampus, improved basal synaptic efficacy, and significantly reduced hippocampal oxidative stress and neuroinflammation. Compound 5i emerges as an interesting anti-Alzheimer lead with beneficial effects on cognitive symptoms and on some underlying disease mechanisms.
Oxidative stress is a major pathogenic factor in Alzheimer's disease, but it should not be tackled alone rather together with other key targets to derive effective treatments. The combination of the scaffold of the polar antioxidant lead 7-methoxy-2,2-dimethylchroman-6-ol (CR-6) with that of the lipophilic cholinesterase inhibitor 6-chlorotacrine results in compounds with favorable brain permeability and multiple activities in vitro (acetylcholinesterase, butyrylcholinesterase, beta-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE-1), and Abeta42 and tau aggregation inhibition). In in vivo studies on wild-type and APP/presenilin 1 (PS1) mice, two selected compounds were well tolerated and led to positive trends, albeit statistically nonsignificant in some cases, on memory performance, amyloid pathology (reduced amyloid burden and potentiated non-amyloidogenic APP processing), and oxidative stress (reduced cortical oxidized proteins and increased antioxidant enzymes superoxide dismutase 2 (SOD2), catalase, glutathione peroxidase 1 (GPX1), and heme oxygenase 1 (Hmox1) and transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2)). These compounds emerge as interesting brain-permeable multitarget compounds, with a potential as anti-Alzheimer agents beyond that of the original lead CR-6.
A novel series of aromatic esters (1a-1m) related to the Amaryllidaceae alkaloid (AA) haemanthamine were designed, synthesized and tested in vitro with particular emphasis on the treatment of neurodegenerative diseases. Some of the synthesized compounds revealed promising acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory profile. Significant human AChE (hAChE) inhibition was demonstrated by 11-O-(3-nitrobenzoyl)haemanthamine (1j) with IC50value of 4.0 +/- 0.3 microM. The strongest human BuChE (hBuChE) inhibition generated 1-O-(2-methoxybenzoyl)haemanthamine (1g) with IC50 value 3.3 +/- 0.4 microM. Moreover, 11-O-(2-chlorbenzoyl)haemanthamine (1m) was able to inhibit both enzymes in dose-dependent manner. The mode of hAChE and hBuChE inhibition was minutely inspected using enzyme kinetic analysis in tandem with in silico experiments, the latter elucidating crucial interaction in 1j-, 1m-hAChE and 1g-, 1m-hBuChE complexes. The blood-brain barrier (BBB) permeability was investigated applying the parallel artificial membrane permeation assay (PAMPA) to predict the CNS availability of the compounds.
Despite the constant progress in the understanding of the etiopathogenesis of Alzheimer's disease (AD) over the last 50 years, just four long-standing drugs are currently used for AD therapy. This article reviews the analytical methodologies developed and applied in the last five years to address the early-stage tasks of the AD drug discovery process: the fast selection of active compounds (hits) and the comprehension of the ligand binding mechanism of the compound chosen to be the lead in the forthcoming development. The reviewed analytical methodologies face the most investigated pharmacological protein targets (amyloids, secretases, kinases, cholinesterases) and specific receptor- and enzyme-mediated effects in neurotransmission, neuroprotection and neurodegeneration. Some of these methodologies are noteworthy for their use in middle/high-throughput screening campaigns during hit selection (e.g. surface plasmon resonance biosensing, fluorescence resonance energy transfer assays), whereas some others (circular dichroism and nuclear magnetic resonance spectroscopies, ion mobility-mass spectrometry) can provide in-depth information about the structure, conformation and ligand binding properties of target proteins.
Twenty-one known Amaryllidaceae alkaloids of various structural types and one undescribed alkaloid, named narcimatuline, have been isolated from fresh bulbs of Narcissus pseudonarcissus L. cv. Dutch Master. The chemical structures were elucidated by combination of MS, HRMS, 1D and 2D NMR spectroscopic techniques, and by comparison with literature data. Narcimatuline amalgamates two basic scaffolds of Amaryllidaceae alkaloids in its core, namely galanthamine and galanthindole. All isolated compounds were evaluated for their in vitro acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), prolyl oligopeptidase (POP), and glycogen synthase kinase-3beta (GSK-3beta) inhibitory activities. The most interesting biological profile was demonstrated by newly isolated alkaloid narcimatuline.
Twelve derivatives 1a-1m of the beta-crinane-type alkaloid haemanthamine were developed. All the semisynthetic derivatives were studied for their inhibitory potential against both acetylcholinesterase and butyrylcholinesterase. In addition, glycogen synthase kinase 3beta (GSK-3beta) inhibition potency was evaluated in the active derivatives. In order to reveal the availability of the drugs to the CNS, we elucidated the potential of selected derivatives to penetrate through the blood-brain barrier (BBB). Two compounds, namely 11-O-(2-methylbenzoyl)-haemanthamine (1j) and 11-O-(4-nitrobenzoyl)-haemanthamine (1m), revealed the most intriguing profile, both being acetylcholinesterase (hAChE) inhibitors on a micromolar scale, with GSK-3beta inhibition properties, and predicted permeation through the BBB. In vitro data were further corroborated by detailed inspection of the compounds' plausible binding modes in the active sites of hAChE and hBuChE, which led us to provide the structural determinants responsible for the activity towards these enzymes.
The development of multitarget compounds against multifactorial diseases, such as Alzheimer's disease, is an area of very intensive research, due to the expected superior therapeutic efficacy that should arise from the simultaneous modulation of several key targets of the complex pathological network. Here we describe the synthesis and multitarget biological profiling of a new class of compounds designed by molecular hybridization of an NMDA receptor antagonist fluorobenzohomoadamantanamine with the potent acetylcholinesterase (AChE) inhibitor 6-chlorotacrine, using two different linker lengths and linkage positions, to preserve or not the memantine-like polycyclic unsubstituted primary amine. The best hybrids exhibit greater potencies than parent compounds against AChE (IC50 0.33nM in the best case, 44-fold increased potency over 6-chlorotacrine), butyrylcholinesterase (IC50 21nM in the best case, 24-fold increased potency over 6-chlorotacrine), and NMDA receptors (IC50 0.89muM in the best case, 2-fold increased potency over the parent benzohomoadamantanamine and memantine), which suggests an additive effect of both pharmacophoric moieties in the interaction with the primary targets. Moreover, most of these compounds have been predicted to be brain permeable. This set of biological properties makes them promising leads for further anti-Alzheimer drug development.
INTRODUCTION: Butyrylcholinesterase (BuChE) has obtained a renewed interest as therapeutic target in Alzheimer's disease (AD), when changes in BuChE activity and expression along disease progression were highlighted as well as correlation between BuChE levels and cognitive function. Areas covered: During the last eight years, fourteen patents on BuChE inhibitors (BuChEI) have been submitted. Only three of them relate to BuChE selective inhibitors, while four of them focus on multitarget inhibitors which address different key pathological factors other than BuChE. Two patents report on non-selective acetylcholinesterase (AChE)/BuChE inhibitors, while four patents deal with natural compounds and their derivatives. One patent relates to antitoxic agents to treat exposure to ChEI pesticides and nerve agents. Expert opinion: Increasing evidence supports BuChE as a more beneficial target in moderate-to-severe forms of AD in comparison to the well-known AChE. However, hitting a single pathological target is likely not sufficient to halt the disease progression. Therefore, patented BuChE inhibitors with a multifunctional profile may open new therapeutic avenues, since the additional activities could reinforce the therapeutic effects. Unfortunately, in vivo studies are limited and key parameters, such as ADMET data, are missing. This lack of information makes difficult to forecast the development of patented BuChEIs into effective drug candidates.
BACKGROUND: The design of multifunctional agents represents one of the most active research field in medicinal chemistry. In particular, tacrine, a well known Acetylcholinesterase inhibitor, is one of the most used starting point to develop multifunctional ligands and hundreds of papers report about these new agents. This is the third review of a series concerning tacrinebased multifunctional ligands; in particular, in the present, we will summarize and discuss the most intriguing examples of tacrine-based multifunctional agents published since 2013 until 2016. METHODS: We analyzed the bibliographic databases for peer-reviewed publications concerning tacrine-based multifunctional agents possessing biological actions that go beyond the simple "cholinergic" blockage. These papers have been subdivided according to their biological activities. Since this is the third review of a series, we took into considerations only the papers appeared since 2013 until 2016. RESULTS: In this review, we have analyzed more than 33 papers. All the reported compounds retain good inhibitory activity towards acetyl- and butyryl-cholinesterase. The other biological activities concern mostly inhibition of a) beta-amyloid aggregation, b) beta-secretase, c) monoamino oxidases, modulation of tau and ROS and metal chelation. CONCLUSION: The analysis of the current literature reported in this review confirm the importance of tacrine as scaffold to develop multifunctional agents potentially usefull to contrast Alzheimer's disease. Furthermore, the compounds herein reported showed very intriguing biological activities that could be used as starting point to develop new compounds even more interesting and, hopefully, clinically usefull to contrast Alzheimer's Disease.
AIM: Simultaneous modulation of several key targets of the pathological network of Alzheimer's disease (AD) is being increasingly pursued as a promising option to fill the critical gap of efficacious drugs against this condition. MATERIALS & METHODS: A short series of compounds purported to hit multiple targets of relevance in AD has been designed, on the basis of their distinct basicities estimated from high-level quantum mechanical computations, synthesized, and subjected to assays of inhibition of cholinesterases, BACE-1, and Abeta42 and tau aggregation, of antioxidant activity, and of brain permeation. RESULTS: Using, as a template, a lead rhein-huprine hybrid with an interesting multitarget profile, we have developed second-generation compounds, designed by the modification of the huprine aromatic ring. Replacement by [1,8]-naphthyridine or thieno[3,2-e]pyridine systems resulted in decreased, although still potent, acetylcholinesterase or BACE-1 inhibitory activities, which are more balanced relative to their Abeta42 and tau antiaggregating and antioxidant activities. CONCLUSION: Second-generation naphthyridine- and thienopyridine-based rhein-huprine hybrids emerge as interesting brain permeable compounds that hit several crucial pathogenic factors of AD.
BACKGROUND: Alzheimer s disease, a progressive and degenerative disorder of the brain, is the most common cause of dementia among the elderly. To face its multifactorial nature, the use of single compounds that can simultaneously modulate different targets involved in the neurodegenerative cascade has emerged as an interesting therapeutic approach. OBJECTIVE: This work investigated the ability of uleine, the major indole alkaloid purified from stem barks of the Brazilian medicinal plant Himatanthus lancifolius, to interact with crucial Alzheimer s disease disruptive targets associated with two of its major neurodegenerative pathways: acetylcholinesterase and butyrylcholinesterase (cholinergic pathway) and beta-secretase and beta-amyloid peptide (amyloidogenic pathway). METHODS: Uleine's capacity to inhibit human acetylcholinesterase and butyrylcholinesterase enzymes was determined measuring the difference between reaction rates with and without uleine monitored at 412 nm using 5,5'- dithiobis-(2- nitrobenzoic acid) as colorimetric agent. FRET based assay was used to evaluate beta-secretase inhibition using DABCYL- Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-EDANS as substrate and beta-amyloid peptide spontaneous aggregation assay was performed using the thioflavin T spectroscopy assay. Cell viability and toxicity experiments with PC12 and SH-SY5Y cell lines were performed using the MTT colorimetric assay. RESULTS: Uleine demonstrated strong inhibitory activities for both cholinesterases (IC50 279.0+/-4.5 and 24.0+/-1.5 muM, respectively) and beta-secretase (IC50 180+/-22 nM). Above all, uleine significantly inhibited the self-aggregation of amyloid- beta peptide and was not toxic for PC12 or SH-SY5Y neuronal cells. CONCLUSION: These data show for the first time that the natural compound uleine has a novel, multieffective ability to decelerate or even inhibit the development of Alzheimer s disease.
In our ongoing study focused on Corydalis cava (Fumariaceae), used in folk medicine in the treatment of memory dysfunctions, we have investigated fifteen previously isolated alkaloids for their potential multifunctional activity on Alzheimer's disease (AD) targets. Determination of ss-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibition was carried out using a BACE1-Immobilized Enzyme Reactor (IMER) by validating the assay with a multi-well plate format Fluorescence Resonance Energy Transfer (FRET) assay. Seven alkaloids out of fifteen were found to be active, with (-)-corycavamine (3) and (+)-corynoline (5) demonstrating the highest BACE1 inhibition activity, in the micromolar range, in a concentration dependent manner. BACE1-IMER was found to be a valid device for the fast screening of inhibitors and the determination of their potency. In a permeation assay (PAMPA) for the prediction of blood-brain barrier (BBB) penetration, the most active compounds, (-)-corycavamine (3) and (+)-corynoline (5), were found to be able to cross the BBB. Not all compounds showed activity against glycogen synthase kinase-3beta (GSK-3beta) and casein kinase-1delta (CK-1delta). On the basis of the reported results, we found that some C. cava alkaloids have multifunctional activity against AD targets (prolyl oligopeptidase, cholinesterases and BACE1). Moreover, we tried to elucidate the treatment effectivity (rational use) of its extract in memory dysfunction in folk medicine.
Twenty-six new tacrine-benzofuran hybrids were designed, synthesized, and evaluated in vitro on key molecular targets for Alzheimer's disease. Most hybrids exhibited good inhibitory activities on cholinesterases and beta-amyloid self-aggregation. Selected compounds displayed significant inhibition of human beta-secretase-1 (hBACE-1). Among the 26 hybrids, 2e showed the most interesting profile as a subnanomolar selective inhibitor of human acetylcholinesterase (hAChE) (IC50 = 0.86 nM) and a good inhibitor of both beta-amyloid aggregation (hAChE- and self-induced, 61.3% and 58.4%, respectively) and hBACE-1 activity (IC50 = 1.35 muM). Kinetic studies showed that 2e acted as a slow, tight-binding, mixed-type inhibitor, while X-ray crystallographic studies highlighted the ability of 2e to induce large-scale structural changes in the active-site gorge of Torpedo californica AChE (TcAChE), with significant implications for structure-based drug design. In vivo studies confirmed that 2e significantly ameliorates performances of scopolamine-treated ICR mice. Finally, 2e administration did not exhibit significant hepatotoxicity.
In an effort to develop multipotent agents against beta-secretase (BACE-1) and acetylcholinesterase (AChE), able to counteract intracellular ROS formation as well, the structure of the fluorinated benzophenone 3 served as starting point for the synthesis of a small library of 3-fluoro-4-hydroxy- analogues. Among the series, derivatives 5 and 12, carrying chemically different amino functions, showed a balanced micromolar potency against the selected targets. In particular, compound 12, completely devoid of toxic effects, seems to be a promising lead for obtaining effective anti-AD drug candidates.
We have synthesized a family of rhein-huprine hybrids to hit several key targets for Alzheimer's disease. Biological screening performed in vitro and in Escherichia coli cells has shown that these hybrids exhibit potent inhibitory activities against human acetylcholinesterase, butyrylcholinesterase, and BACE-1, dual Abeta42 and tau antiaggregating activity, and brain permeability. Ex vivo studies with the leads (+)- and (-)-7e in brain slices of C57bl6 mice have revealed that they efficiently protect against the Abeta-induced synaptic dysfunction, preventing the loss of synaptic proteins and/or have a positive effect on the induction of long-term potentiation. In vivo studies in APP-PS1 transgenic mice treated ip for 4 weeks with (+)- and (-)-7e have shown a central soluble Abeta lowering effect, accompanied by an increase in the levels of mature amyloid precursor protein (APP). Thus, (+)- and (-)-7e emerge as very promising disease-modifying anti-Alzheimer drug candidates.
The anti-amyloid properties shared by several quinones inspired the design of a new series of hybrids derived from the multi-target drug candidate memoquin (1). The hybrids consist of a central benzoquinone core and a fragment taken from non-steroidal anti-inflammatory drugs, connected through polyamine linkers. The new hybrids retain the potent anti-aggregating activity of the parent 1, while exhibiting micromolar AChE inhibitory activities. Remarkably, 2, 4, (R)-6 and (S)-6 were Abeta aggregation inhibitors even more potent than 1. The balanced amyloid/cholinesterase inhibitory profile is an added value that makes the present series of compounds promising leads against Alzheimer's disease.
Lipocrine has been selected as an effective candidate for in vivo investigation because of its multiple biological properties, namely inhibition of AChE and BChE activities, inhibition of AChE-induced Abeta aggregation, and ability to protect cells against reactive oxygen species. To evaluate the possibility for lipocrine to become a lead and to be developed as a multipotent drug for the treatment of Alzheimer's disease, ADMET (absorption, distribution, metabolism, excretion, and toxicity) parameters need to be determined. Among ADMET parameters, distribution plays a key role in determining the lead drugability, and the drug binding to plasma proteins greatly influences the drug distribution. Here, the human serum albumin (HSA) binding of lipocrine has been studied by circular dichroism (CD) spectroscopy. The reversible binding of lipocrine is stereoselective as shown by the well-defined induced CD spectrum in its binding to HSA. The intensity of the CD signal changes upon changing the [drug]/[HSA] molar ratio, showing a different behavior for a [drug]/[HSA] up to 2/1 or over this molar ratio, suggesting a binding to multiple sites. Competition experiments show that lipocrine interacts significantly with all the main binding sites on the serum carrier. A direct competition has been monitored for site II and bilirubin-binding site, whereas a noncooperative binding should better describe the displacement observed at site I. Rac-lipocrine and its enantiomers are characterized by two different binding modes. Almost the same induced CD spectra were obtained for both (R)- and (S)-lipocrine complexed to HSA, suggesting a similar stereochemistry for the bound enantiomers.