To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.
The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.
After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chromosomes. Chromosome 3 comprises just four contigs, one of which currently represents the longest unbroken stretch of finished DNA sequence known so far. The chromosome is remarkable in having the lowest rate of segmental duplication in the genome. It also includes a chemokine receptor gene cluster as well as numerous loci involved in multiple human cancers such as the gene encoding FHIT, which contains the most common constitutive fragile site in the genome, FRA3B. Using genomic sequence from chimpanzee and rhesus macaque, we were able to characterize the breakpoints defining a large pericentric inversion that occurred some time after the split of Homininae from Ponginae, and propose an evolutionary history of the inversion.
The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.
Adhesions in the peritoneal cavity have been implicated in the cause of intestinal obstruction and infertility, but their role in the aetiology of chronic pelvic pain is unclear. Nerves have been demonstrated in human pelvic adhesions, but the presence of pain-conducting fibres has not been established. The purpose of this study was to use an animal model to examine the growth of nerves during adhesion formation at various times following injury and to characterize the types of fibres present. Adhesions were generated in mice by injuring the surface of the caecum and adjacent abdominal wall, with apposition. At 1-8 weeks post-surgery, adhesions were processed and nerve fibres characterized histologically, immunohistochemically, and ultrastructurally. Peritoneal adhesions had consistently formed by 1 week after surgery and from 2 weeks onwards, all adhesions contained some nerve fibres which were synaptophysin, calcitonin gene-related peptide, and substance P-immunoreactive, and were seen to originate from the caecum. By 4 weeks post-surgery, nerve fibres were found to originate from both the caecum and the abdominal wall, and as demonstrated by acetylcholinesterase histochemistry, many traversed the entire adhesion. Ultrastructural analysis showed both myelinated and non-myelinated nerve fibres within the adhesion. This study provides the first direct evidence for the growth of sensory nerve fibres within abdominal visceral adhesions in a murine model and suggests that there may be nerve fibres involved in the conduction of pain stimuli.
        
Title: Interindividual and interspecies variation in hepatic microsomal epoxide hydrolase activity: studies with cis-stilbene oxide, carbamazepine 10, 11-epoxide and naphthalene Kitteringham NR, Davis C, Howard N, Pirmohamed M, Park BK Ref: Journal of Pharmacology & Experimental Therapeutics, 278:1018, 1996 : PubMed
Microsomal epoxide hydrolase (HYL1) is a single-gene enzyme responsible for the hydrolysis of epoxides derived from the oxidative metabolism of xenobiotics. Variation in HYL1, therefore, may be an important determinant of drug toxicity. We have investigated HYL1 enzyme kinetics in six different species including man, for which a liver bank genotyped for polymorphisms in exons 3 and 4 of the HYL1 gene was used. Activity was measured by radiochromatography with high specific activity radiolabeled substrates, cis-stilbene oxide (CSO) and carbamazepine 10,11-epoxide (CBZ-E). In addition, naphthalene was used to investigate the hydrolysis of an epoxide (naphthalene 1,2-epoxide [N-E] generated in situ. There was marked species variation in enzyme activity that was substrate dependent. CSO was rapidly hydrolyzed by microsomes from all species, the rank order of specific activity being human > rabbit > dog > rat > hamster > mouse. In contrast, hydrolysis of CBZ-E was only observed with human liver microsomes. CBZ-E was only a weak (IC50 = 1 mM) inhibitor of CSO hydrolysis. The hydrolysis of N-E, determined as the diol-to-total metabolite ratio, was human > rabbit > dog > hamster > mouse > rat. Intraspecies variation in man was 4-fold, 7-fold and 2-fold for CSO, CBZ-E and N-E, respectively: none of this variation could be directly accounted for by the HYL1 polymorphisms in exons 3 and 4. These data emphasize the need for careful toxicokinetic evaluation of species used in the safety evaluation of compounds likely to form epoxide intermediates in vivo.