Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.
        
Title: Increased Levels of Human Carotid Lesion Linoleic Acid Hydroperoxide in Symptomatic and Asymptomatic Patients Is Inversely Correlated with Serum HDL and Paraoxonase 1 Activity Cohen E, Aviram M, Khatib S, Rabin A, Mannheim D, Karmeli R, Vaya J Ref: J Lipids, 2012:762560, 2012 : PubMed
Human carotid plaque components interact directly with circulating blood elements and thus they might affect each other. We determined plaque paraoxonase1 (PON1) hydrolytic-catalytic activity and compared plaque and blood levels of lipids, HDL, PON1, and HbA1c, as well as plaque-oxidized lipids in symptomatic and asymptomatic patients. Human carotid plaques were obtained from symptomatic and asymptomatic patients undergoing routine endarterectomy, and the lesions were ground and extracted for PON activity and lipid content determinations. Plaque PONs preserved paraoxonase, arylesterase, and lactonase activities. The PON1-specific inhibitor 2-hydroxyquinoline almost completely inhibited paraoxonase and lactonase activities, while only moderately inhibiting arylesterase activity. Oxysterol and triglyceride levels in plaques from symptomatic and asymptomatic patients did not differ significantly, but plaques from symptomatic patients had significantly higher (135%) linoleic acid hydroperoxide (LA-13OOH) levels. Their serum PON1 activity, cholesterol and triglyceride levels did not differ significantly, but symptomatic patients had significantly lower (28%) serum HDL levels and higher (18%) HbA1c levels. Thus LA-13OOH, a major atherogenic plaque element, showed significant negative correlations with serum PON1 activity and HDL levels, and a positive correlation with the prodiabetic atherogenic HbA1c. Plaque PON1 retains its activity and may decrease plaque atherogenicity by reducing specific oxidized lipids (e.g., LA-13OOH). The inverse correlation between plaque LA-13OOH level and serum HDL level and PON1 activity suggests a role for serum HDL and PON1 in LA-13OOH accumulation.
        
Title: Locomotion analysis identifies roles of mechanosensory neurons in governing locomotion dynamics of C. elegans Cohen E, Yemini E, Schafer W, Feitelson DG, Treinin M Ref: J Exp Biol, 215:3639, 2012 : PubMed
The simple and well-characterized nervous system of C. elegans facilitates the analysis of mechanisms controlling behavior. Locomotion is a major behavioral output governed by multiple external and internal signals. Here, we examined the roles of low- and high-threshold mechanosensors in locomotion, using high-resolution and detailed analysis of locomotion and its dynamics. This analysis revealed a new role for touch receptor neurons in suppressing an intrinsic direction bias of locomotion. We also examined the response to noxious mechanical stimuli, which was found to involve several locomotion properties and to last several minutes. Effects on different locomotion properties have different half-lives and depend on different, partly overlapping sets of sensory neurons. PVD and FLP, high-threshold mechanosensors, play a major role in some of these responses. Overall, our results demonstrate the power of detailed, prolonged and high-resolution analysis of locomotion and locomotion dynamics in enabling better understanding of gene and neuron function.
        
Title: The BTB-MATH protein BATH-42 interacts with RIC-3 to regulate maturation of nicotinic acetylcholine receptors Shteingauz A, Cohen E, Biala Y, Treinin M Ref: Journal of Cell Science, 122:807, 2009 : PubMed
RIC-3 is a member of a conserved family of proteins that affect nicotinic acetylcholine receptor maturation. In yeast and in vitro, BATH-42, a BTB- and MATH-domain-containing protein, interacts with RIC-3. BATH-42 is also known to interact with the CUL-3 ubiquitin ligase complex. Loss of BATH-42 function leads to increased RIC-3 expression and decreased activity of nicotinic acetylcholine receptors in Caenorhabditis elegans vulva muscles. Increased expression of RIC-3 is deleterious for activity and distribution of nicotinic acetylcholine receptors, and thus the effects of BATH-42 loss of function on RIC-3 expression explain the associated reduction in receptor activity. Overexpression of BATH-42 is also detrimental to nicotinic acetylcholine receptor function, leading to decreased pharyngeal pumping. This effect depends on the C-terminus of RIC-3 and on CUL-3. Thus, our work suggests that BATH-42 targets RIC-3 to degradation via CUL-3-mediated ubiquitylation. This demonstrates the importance of regulation of RIC-3 levels, and identifies a mechanism that protects cells from the deleterious effects of excess RIC-3.
The brain generates extensive spontaneous network activity patterns, even in the absence of extrinsic afferents. While the cognitive correlates of these complex activities are being unraveled, the rules that govern the generation, synchronization and spread of different patterns of intrinsic network activity in the brain are still enigmatic. Using hippocampal neurons grown in dissociated cultures, we are able to study these rules. Network activity emerges at 3-7 days in-vitro (DIV) independent of either ongoing excitatory or inhibitory synaptic activity. Network activity matures over the following several weeks in culture, when it becomes sensitive to chronic drug treatment. The size of the network determines its properties, such that dense networks have higher rates of less synchronized activity than that of sparse networks, which are more synchronized but rhythm at lower rates. Large networks cannot be triggered to fire by activating a single neuron. Small networks, on the other hand, do not burst spontaneously, but can be made to discharge a network burst by stimulating a single neuron. Thus, the strength of connectivity is inversely correlated with spontaneous activity and synchronicity. In the absence of confirmed 'leader' neurons, synchronous bursting network activity appears to be triggered by at least several local subthreshold synaptic events. We conclude that networks of neurons in culture can produce spontaneous synchronized activity and serve as a viable model system for the analysis of the rules that govern network activity in the brain.
        
Title: Evaluation of mechanisms of azinphos-methyl resistance in the codling moth Cydia pomonella (L.) Reuveny H, Cohen E Ref: Archives of Insect Biochemistry & Physiology, 57:92, 2004 : PubMed
Resistance of the codling moth Cydia pomonella (L.) to azinphos-methyl is not based on enhanced detoxifying enzymes like oxidation mediated by mixed function oxidases or by glutathione S-transferases. Synergism by S,S,S-tributylphosphoro-trithioate was evident, but the overall activity of general esterases using p-nitrophenyl acetate as the substrate was similar in resistant and susceptible insects. In comparison to acetylcholinesterase (AChE) from susceptible adult codling moth, the enzyme of insects resistant to azinphos-methyl has low affinities (higher K(m) values) to the substrates acetylthiocholine (ATCh) and propionylthiocholine. This difference indicates a possible amino acid alteration at the catalytic or anionic binding sites of the resistant enzyme. Inhibition studies revealed no apparent differences in sensitivity of AChE enzymes from resistant and susceptible moths to organophosphorus compounds (OPs), carbamate insecticides and quaternary ammonium ligands. MEPQ (7-Methylethoxyphosphinyloxy)-1-methylquinolinium) is the most powerful OP inhibitor acting at a nM range, while chlopyrifos oxon, azinphos-methyl oxon and paraoxon are less inhibitory by 22.9, 82.3 and 475 fold, respectively. The codling moth AChE is a typical enzyme that displays substrate inhibition by ATCh, negligible hydrolysis of butyrylthiocholine, very high sensitivity to the bisquaternary ammonium compound BW284c51 and it is not inhibited by the powerful butyrylcholinesterase inhibitor iso-OMPA. Of the three carbamates examined, only carbaryl was inhibitory at the mM range while pirimicarb and aldicarb were inactive. Of the quaternary ammonium ligands (except for the powerful BW284c51), edrophonium and decamethonium displayed appreciable inhibition rates, while d-tubocuraine was practically inactive.
        
Title: Acetylcholinesterase of the California red scale Aonidiella aurantii Mask.: Catalysis, inhibition, and reactivation Yerushalmi N, Cohen E Ref: Pesticide Biochemistry and Physiology, 72:133, 2002 : PubMed
The properties of the California red scale, Aonidiella aurantii, acetylcholinesterase (AChE) were studied using various substrates, inhibitors, and reactivators. The enzyme is inhibited by di(p-allyl-N-methylaminophenyl)pentane-3-one, is insensitive to tetraisopropyl pyrophosphoamidate, and displays the substrate inhibition phenomenon. The insect AChE deviates from its vertebrate counterparts by requiring a comparatively higher level of substrate to attain inhibition, by effectively hydrolyzing the larger homologous substrate propionyl thiocholine, by having a very high sensitivity to a bulkier inhibitor such as chlopyrifos-oxon, by having insensitivity to the peripheral anionic site (PAS) inhibitor fasciculin, and by being reactivated by pyridine-2-aldoxime methyl iodide but not by 1-(4-aminocarbonylpyridinium-1'-(2'-pyridiniumaldoxime)dimethyl dibromide. Those differences were discussed as being associated with probable changes of amino acid composition within the enzyme acyl pocket and the PAS. Based on the above comparison, the insect enzyme may be regarded as an intermediate between AChE and butyrylcholinesterase. Among the organophosphorus (OP) compounds, chlopyrifos-oxon and 7-(methylethoxyphosphinyloxy)-1-methyl quinolinium were the most powerful inhibitors, while paraoxon was two orders of magnitude less effective. Among the carbamates, carbaryl was similar to paraoxon in its inhibitory effects followed by aldicarb and pirimicarb. The alkaloid huperzine A is an extremely potent inhibitor of the diaspidid AChE (with a Ki value in the subnanomolar range). The quaternary ammonium ligands propidium, edrophonium, and d-tubocurarine displayed high levels of inhibition. Toxogonin was the most powerful reactivator of OP-inhibited enzyme, while its nonoxime analog 1,1-bis(4-tertbutylpyridinium)dimethylether dichloride was without effect. Possible reasons for the enhanced inhibition of AChE in the presence of carbaryl and Toxogonin were discussed.
        
Title: Prophylaxis against soman inhalation toxicity in guinea pigs by pretreatment alone with human serum butyrylcholinesterase Allon N, Raveh L, Gilat E, Cohen E, Grunwald J, Ashani Y Ref: Toxicol Sci, 43:121, 1998 : PubMed
Human butyrylcholinesterase (HuBChE) has previously been shown to protect mice, rats, and monkeys against multiple lethal toxic doses of organophosphorus (OP) anticholinesterases that were challenged by i.v. bolus injections. This study examines the concept of using a cholinesterase scavenger as a prophylactic measure against inhalation toxicity, which is the more realistic simulation of exposure to volatile OPs. HuBChE-treated awake guinea pigs were exposed to controlled concentration of soman vapors ranging from 417 to 430 micrograms/liter, for 45 to 70 s. The correlation between the inhibition of circulating HuBChE and the dose of soman administered by sequential i.v. injections and by respiratory exposure indicated that the fraction of the inhaled dose of soman that reached the blood was 0.29. HuBChE to soman molar ratio of 0.11 was sufficient to prevent the manifestation of toxic signs in guinea pigs following exposure to 2.17x the inhaled LD50 dose of soman (ILD50, 101 micrograms/kg). A slight increase in HuBChE:soman ratio (0.15) produced sign-free animals after two sequential respiratory exposures with a cumulative dose of 4.5x ILD50. Protection was exceptionally high and far superior to the currently used traditional approach that consisted of pretreatment with pyridostigmine and postexposure combined administration of atropine, benactyzine, and an oxime reactivator. Quantitative analysis of the results suggests that in vivo sequestration of soman, and presumably other OPs, by exogenously administered HuBChE, is independent of the species used or the route of challenge entry. This assuring conclusion significantly expands the database of the bioscavenger strategy that now offers a dependable extrapolation from animals to human.
        
Title: The stoichiometry of protection against soman and VX toxicity in monkeys pretreated with human butyrylcholinesterase Raveh L, Grauer E, Grunwald J, Cohen E, Ashani Y Ref: Toxicol Appl Pharmacol, 145:43, 1997 : PubMed
Bioscavengers of organophophates (OP) have been examined as potential substitutes for the currently approved drug treatment against OP toxicity. The present work was designed to assess the ability of butyrylcholinesterase, purified from human serum (HuBChE), to prevent the toxicity induced by soman and VX in rhesus monkeys. The consistency of the data across species was then evaluated as the basis for the extrapolation of the data to humans. The average mean residence time of the enzyme in the circulation of monkeys following an intravenous loading was 34 hr. High bioavailability of HuBChE in blood (>80%) was demonstrated after intramuscular injection. A molar ratio of HuBChE:OP approximately 1.2 protected against an i.v. bolus injection of 2.1 x LD50 VX, while a ratio of 0.62 was sufficient to protect monkeys against an i.v. dose of 3.3 x LD50 of soman, with no additional postexposure therapy. A remarkable protection was also seen against soman-induced behavioral deficits detected in the performance of a spatial discrimination task. The consistency of the results across several species offers a reliable prediction of both the stoichiometry of the scavenging and the extent of prophylaxis with HuBChE against nerve agent toxicity in humans.
        
Title: Protection of Guinea Pigs against Soman Inhalation by Pretreatment Alone with Human Butyrylcholinesterase Allon N, Raveh L, Gilat E, Grunwald J, Manistersky E, Cohen E, Ashani Y Ref: In Enzyme of the Cholinesterase Family - Proceedings of Fifth International Meeting on Cholinesterases, (Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P., Eds) Plenum Publishing Corp.:398, 1995 : PubMed
Title: Human Butyrylcholinesterase as Prophylaxis Treatment against Soman Grauer E, Raveh L, Kapon J, Grunwald J, Cohen E, Ashani Y Ref: In Enzyme of the Cholinesterase Family - Proceedings of Fifth International Meeting on Cholinesterases, (Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P., Eds) Plenum Publishing Corp.:400, 1995 : PubMed
Title: Prevention of Brain Damage and Behavioral Performance Changes following an IV Injection of Soman and VX in Rats Pretreated with Human Butyrylcholinesterase Kadar T, Raveh L, Brandeis R, Grunwald J, Cohen E, Ashani Y Ref: In Enzyme of the Cholinesterase Family - Proceedings of Fifth International Meeting on Cholinesterases, (Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P., Eds) Plenum Publishing Corp.:404, 1995 : PubMed
Title: Efficacy of Prophylaxis with Human Butyrylcholinesterase against Soman and VX Poisoning Raveh L, Grunwald J, Cohen E, Ashani Y Ref: In Enzyme of the Cholinesterase Family - Proceedings of Fifth International Meeting on Cholinesterases, (Quinn, D.M., Balasubramanian, A.S., Doctor, B.P., Taylor, P., Eds) Plenum Publishing Corp.:402, 1995 : PubMed
Title: Prevention of soman-induced cognitive deficits by pretreatment with human butyrylcholinesterase in rats Brandeis R, Raveh L, Grunwald J, Cohen E, Ashani Y Ref: Pharmacol Biochem Behav, 46:889, 1993 : PubMed
This study examined the ability of pretreatment with human serum butyrylcholinesterase (HuBChE) to prevent soman-induced cognitive impairments. Behavioral testing was carried out using the Morris water maze task evaluating learning, memory, and reversal learning processes. Pretreatment with HuBChE significantly prevented the memory and reversal learning impairments induced by soman. A small deficiency in performance was observed only during part of the learning period in HuBChE-treated rats after administration of soman. Results support the contention that pretreatment alone with HuBChE is sufficient to increase survival and to prevent impairment in cognitive functioning following exposure to soman.
        
Title: Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity. In vitro and in vivo quantitative characterization Raveh L, Grunwald J, Marcus D, Papier Y, Cohen E, Ashani Y Ref: Biochemical Pharmacology, 45:2465, 1993 : PubMed
Butyrylcholinesterase purified from human plasma (HuBChE) was evaluated both in vitro and in vivo in mice and rats as a single prophylactic antidote against the lethal effects of highly toxic organophosphates (OP). The variation among the bimolecular rate constants for the inhibition of HuBChE by tabun, VX, sarin, and soman was 10-fold (0.47 to 5.12 x 10(7) M-1 min-1; pH 8.0, 26 degrees). The half-life of HuBChE in blood after its i.v. administration in mice and rats was 21 and 46 hr, respectively. The peak blood-enzyme level was obtained in both species approximately 9-13 hr following i.m. injection of HuBChE, and the fraction of the enzyme activity absorbed into the blood was 0.9 and 0.54 for rats and mice, respectively. The stoichiometry of the in vivo sequestration of the anti-cholinesterase toxicants was consistent with the HuBChE/OP ratio of the molar concentration required to inhibit 100% enzyme activity in vitro. Linear correlation was demonstrated between the blood level of HuBChE and the extent of protection conferred against the toxicity of nerve agents. Pretreatment with HuBChE alone was sufficient not only to increase survivability following exposure to multiple median lethal doses of a wide range of potent OPs, but also to alleviate manifestation of toxic symptoms in mice and rats without the need for additional post-exposure therapy. It appeared that in order to confer protection against lethality nerve agents had to be scavenged to a level below their median lethal dose LD50 within less than one blood circulation time. Since the high rate of sequestration of nerve agents by HuBChE is expected to underlie the activity of the scavenger in other species as well, a reliable extrapolation of its efficacy from experimental animals to humans can be made.