There is interest in developing inhibitors of human group III secreted phospholipase A2 (hGIII-sPLA2) because this enzyme plays a role in mast cell maturation. There are no potent inhibitors for hGIII-sPLA2 reported to date, so we adapted a fluorescence-based enzyme activity monitoring method to a high-throughput screening format. We opted to use an assay based on phospholipid substrate present in phospholipid vesicles since this matrix more closely resembles the natural substrate of hGIII-sPLA2, as opposed to phospholipid/detergent mixed micelles. The substrate is a phospholipid analogue containing BODIPY fluorophores dispersed as a minor component in vesicles of nonfluorescent phospholipids. Action of hGIII-sPLA2 liberates a free fatty acid from the phospholipid, leading to a reduction in quenching of the fluorophore and hence an increase in fluorescence. The assay uses optical detection in a 1536-well plate format with an excitation wavelength far away from the UV range so as to minimize false-positive library hits that result from quenching of the fluorescence. The high-throughput screen was successfully carried out on a library of 370,276 small molecules. Several hits were discovered, and data have been uploaded to PubChem. This study describes the first high-throughput optical screening assay for secreted phospholipase A2 inhibitors based on a phospholipid vesicle substrate.
Fat and muscle lipolysis involves functional interactions of adipose triglyceride lipase (ATGL), alpha-beta hydrolase domain-containing protein 5 (ABHD5), and tissue-specific perilipins 1 and 5 (PLIN1 and PLIN5). ABHD5 potently activates ATGL, but this lipase-promoting activity is suppressed when ABHD5 is bound to PLIN proteins on lipid droplets. In adipocytes, protein kinase A (PKA) phosphorylation of PLIN1 rapidly releases ABHD5 to activate ATGL, but mechanisms for rapid regulation of PLIN5-ABHD5 interaction in muscle are unknown. Here, we identify synthetic ligands that release ABHD5 from PLIN1 or PLIN5 without PKA activation and rapidly activate adipocyte and muscle lipolysis. Molecular imaging and affinity probe labeling demonstrated that ABHD5 is directly targeted by these synthetic ligands and additionally revealed that ABHD5-PLIN interactions are regulated by endogenous ligands, including long-chain acyl-CoA. Our results reveal a new locus of lipolysis control and suggest ABHD5 ligands might be developed into novel therapeutics that directly promote fat catabolism.
Peptidases play vital roles in physiology through the biosynthesis, degradation, and regulation of peptides. Prolyl endopeptidase-like (PREPL) is a newly described member of the prolyl peptidase family, with significant homology to mammalian prolyl endopeptidase and the bacterial peptidase oligopeptidase B. The biochemistry and biology of PREPL are of fundamental interest due to this enzyme's homology to the biomedically important prolyl peptidases and its localization in the central nervous system. Furthermore, genetic studies of patients suffering from hypotonia-cystinuria syndrome (HCS) have revealed a deletion of a portion of the genome that includes the PREPL gene. HCS symptoms thought to be caused by lack of PREPL include neuromuscular and mild cognitive deficits. A number of complementary approaches, ranging from biochemistry to genetics, will be required to understand the biochemical, cellular, physiological, and pathological mechanisms regulated by PREPL. We are particularly interested in investigating physiological substrates and pathways controlled by PREPL. Here, we use a fluorescence polarization activity-based protein profiling (fluopol-ABPP) assay to discover selective small-molecule inhibitors of PREPL. Fluopol-ABPP is a substrate-free approach that is ideally suited for studying serine hydrolases for which no substrates are known, such as PREPL. After screening over 300,000 compounds using fluopol-ABPP, we employed a number of secondary assays to confirm assay hits and characterize a group of 3-oxo-1-phenyl-2,3,5,6,7,8-hexahydroisoquinoline-4-carbonitrile and 1-alkyl-3-oxo-3,5,6,7-tetrahydro-2H-cyclopenta[c]pyridine-4-carbonitrile PREPL inhibitors that are able to block PREPL activity in cells. Moreover, when administered to mice, 1-isobutyl-3-oxo-3,5,6,7-tetrahydro-2H-cyclopenta[c]pyridine-4-carbonitrile distributes to the brain, indicating that it may be useful for in vivo studies. The application of fluopol-ABPP has led to the first reported PREPL inhibitors, and these inhibitors will be of great value in studying the biochemistry of PREPL and in eventually understanding the link between PREPL and HCS.
We recently described a fluorescence polarization platform for competitive activity-based protein profiling (fluopol-ABPP) that enables high-throughput inhibitor screening for enzymes with poorly characterized biochemical activity. Here, we report the discovery of a class of oxime ester inhibitors for the unannotated serine hydrolase RBBP9 from a full-deck (200,000+ compound) fluopol-ABPP screen conducted in collaboration with the Molecular Libraries Screening Center Network (MLSCN). We show that these compounds covalently inhibit RBBP9 by modifying enzyme's active site serine nucleophile and, based on competitive ABPP in cell and tissue proteomes, are selective for RBBP9 relative to other mammalian serine hydrolases.