John Edward Casida was born Dec. 22, 1929, in Phoenix, Arizona and died June 30 2018 in Berkeley, He earned a Ph.D. in entomology, biochemistry and plant physiology in 1954 at the University of Wisconsin in Madison. In 1964, Casida joined UC Berkeleys entomology department. He was one of the worlds leading authorities on how pesticides work and how they can potentially harm humans
Originally, organophosphorus (OP) toxicology consisted of acetylcholinesterase inhibition by insecticides and chemical threat agents acting as phosphorylating agents for serine in the catalytic triad, but this is no longer the case. Other serine hydrolases can be secondary OP targets, depending on the OP structure, and include neuropathy target esterase, lipases, and endocannabinoid hydrolases. The major OP herbicides are glyphosate and glufosinate, which act in plants but not animals to block aromatic amino acid and glutamine biosynthesis, respectively, with safety for crops conferred by their expression of herbicide-tolerant targets and detoxifying enzymes from bacteria. OP fungicides, pharmaceuticals including calcium retention agents, industrial chemicals, and cytochrome P450 inhibitors act by multiple noncholinergic mechanisms, often with high potency and specificity. One type of OP-containing fire retardant forms a highly toxic bicyclophosphate gamma-aminobutyric acid receptor antagonist upon combustion. Some OPs are teratogenic, mutagenic, or carcinogenic by known mechanisms that can be avoided as researchers expand knowledge of OP chemistry and toxicology for future developments in bioregulation.
        
Title: Why Prodrugs and Propesticides Succeed Casida JE Ref: Chemical Research in Toxicology, 30:1117, 2017 : PubMed
What are the advantages of bioactivation in optimizing drugs and pesticides? Why are there so many prodrugs and propesticides? These questions are examined here by considering compounds selected on the basis of economic value or market success in 2015. The 100 major drugs and 90 major pesticides are divided into ones acting directly and those definitely or possibly requiring bioactivation. Established or candidate prodrugs accounted for 19% of the total drug sales, with corresponding values of 20, 37, and 17% for proinsecticides, proherbicides, and profungicides. The 19 prodrugs acting in humans generally had better pharmacodynamic/pharmacokinetic properties for target enzyme, receptor, tissue, or organ specificity due to their physical properties (lipophilicity and stabilization). Bioactivation usually involved hydrolases or cytochrome P450 oxidation or reduction. Prodrugs considered are neuroactive aripiprazole, eletriptan, desvenlafaxin, lisdexamfetamine, quetiapine, and fesoterodine; cholesterol-lowering atorvastatin, ezetimibe, and fenofibrate; various prodrugs activated by esterases or sulfatases, ciclesonide, oseltamivir, dabigatran; omega-3 fatty acid ethyl esters and esterone sulfate; and five others with various targets (sofosbuvir, fingolimod, clopidogrel, dapsone, and sildenafil). The proinsecticides are the neuroactive chlorpyrifos, thiamethoxam, and indoxacarb, two spiro enol ester inhibitors of acetyl CoA carboxylase (ACCase), and the bacterial protein delta-endotoxin. The proherbicides considered are five ACCase inhibitors including pinoxaden and clethodim, three protox inhibitors (saflufenacil, flumioxazin, and canfentrazone-ethyl), and three with various targets (fluroxypyr, isoxaflutole, and clomazone). The profungicides are prothioconazole, mancozeb, thiophanate-methyl, dazomet, and fosetyl-aluminum. The prodrug and propesticide concept is broadly applicable and has created some of the most selective pharmaceutical and pest control agents, illustrated here by major compounds that partially overcome pharmacokinetic limitations of potency and selectivity in the corresponding direct-acting compounds. The challenges of molecular design extend beyond the target site fit to the bioactivatable precursor and the fascinating chemistry and biology matched against the complexity of life processes.
        
Title: Lipases and their inhibitors in health and disease Nomura DK, Casida JE Ref: Chemico-Biological Interactions, 259:211, 2016 : PubMed
Lipids play diverse and important biological roles including maintaining cellular integrity, storing fat for energy, acting as signaling molecules, and forming microdomains to support membrane protein signaling. Altering the levels of specific lipid species through activating or inactivating their biosynthetic or degradative pathways has been shown to provide either therapeutic benefit or cause disease. This review focuses on the functional, therapeutic, and (patho)physiological roles of lipases within the serine hydrolase superfamily and their inhibitors, with particular emphasis on the pharmacological tools, drugs, and environmental chemicals that inhibit these lipases.
        
Title: Neuroactive insecticides: targets, selectivity, resistance, and secondary effects Casida JE, Durkin KA Ref: Annual Review of Entomology, 58:99, 2013 : PubMed
Neuroactive insecticides are the principal means of protecting crops, people, livestock, and pets from pest insect attack and disease transmission. Currently, the four major nerve targets are acetylcholinesterase for organophosphates and methylcarbamates, the nicotinic acetylcholine receptor for neonicotinoids, the gamma-aminobutyric acid receptor/chloride channel for polychlorocyclohexanes and fiproles, and the voltage-gated sodium channel for pyrethroids and dichlorodiphenyltrichloroethane. Species selectivity and acquired resistance are attributable in part to structural differences in binding subsites, receptor subunit interfaces, or transmembrane regions. Additional targets are sites in the sodium channel (indoxacarb and metaflumizone), the glutamate-gated chloride channel (avermectins), the octopamine receptor (amitraz metabolite), and the calcium-activated calcium channel (diamides). Secondary toxic effects in mammals from off-target serine hydrolase inhibition include organophosphate-induced delayed neuropathy and disruption of the cannabinoid system. Possible associations between pesticides and Parkinson's and Alzheimer's diseases are proposed but not established based on epidemiological observations and mechanistic considerations.
        
Title: Anticholinesterase insecticide retrospective Casida JE, Durkin KA Ref: Chemico-Biological Interactions, 203:221, 2013 : PubMed
The anticholinesterase (antiChE) organophosphorus (OP) and methylcarbamate (MC) insecticides have been used very effectively as contact and systemic plant protectants for seven decades. About 90 of these compounds are still in use - the largest number for any insecticide chemotype or mode of action. In both insects and mammals, AChE inhibition and acetylcholine accumulation leads to excitation and death. The cholinergic system of insects is located centrally (where it is protected from ionized OPs and MCs) but not at the neuromuscular junction. Structural differences between insect and mammalian AChE are also evident in their genomics, amino acid sequences and active site conformations. Species selectivity is determined in part by inhibitor and target site specificity. Pest population selection with OPs and MCs has resulted in a multitude of modified AChEs of altered inhibitor specificity some conferring insecticide resistance and others enhancing sensitivity. Much of the success of antiChE insecticides results from a suitable balance of bioactivation and detoxification by families of CYP450 oxidases, hydrolases, glutathione S-transferases and others. Known inhibitors for these enzymes block detoxification and enhance potency which is particularly important in resistant strains. The current market for OPs and MCs of 19% of worldwide insecticide sales is only half of that of 10years ago for several reasons: there have been no major new compounds for 30years; resistance has eroded their effectiveness; human toxicity problems are still encountered; the patents have expired reducing the incentive to update registration packages; alternative chemotypes or control methods have been developed. Despite this decline, they still play a major role in pest control and the increasing knowledge on their target sites and metabolism may make it possible to redesign the inhibitors for insensitive AChEs and to target new sites in the cholinergic system. The OPs and MCs are down but not out.
        
Title: Characterization of the transient oxaphosphetane BChE inhibitor formed from spontaneously activated ethephon Lantz SR, Casida JE Ref: Chemical Research in Toxicology, 26:1320, 2013 : PubMed
The major plant growth regulator ethephon degrades to ethylene and phosphate in aqueous solutions and plants and is spontaneously activated to a butyrylcholinesterase (BChE) inhibitor in alkaline solutions and animal tissues. In the present (31)P NMR kinetic study of the reactions of ethephon in pH 7.4 carbonate buffer, we observed a transient peak at 28.11 ppm. The time course for the appearance and disappearance of this peak matches the activation/degradation kinetic profile of the BChE inhibitor, and the chemical shift supports the proposed 2-oxo-2-hydroxy-1,2-oxaphosphetane structure.
The plant growth regulator ethephon (2-chloroethylphosphonic acid) inhibits human butyrylcholinesterase (BChE) by making a covalent adduct on the active site serine 198. Our goal was to extend earlier studies on ethephon inhibition. Addition of freshly prepared ethephon to BChE in buffered medium, at pH 7.0 and 22 degrees C, resulted in no inhibition initially. However, inhibition developed progressively over 60 min of incubation. Preincubation of ethephon in pH 7-9 buffers increased its initial inhibitory potency. These observations indicated that ethephon itself was not the inhibitor. About 3% of the initial ethephon could be trapped as a BChE adduct. Mass spectral analysis of the active site peptide from inhibited BChE showed that the inhibitor added a mass of 108 Da to the active site serine on peptide FGES198AGAAS. This result rules out a previous hypothesis that ethephon adds HPO3 to BChE (added mass of 80 Da). To accommodate these observations, we propose that in aqueous media at neutral to slightly alkaline pH about 3% of the ethephon is converted (t1/2 = 9.9 h at pH 7.0) into a cyclic oxaphosphetane which is the actual BChE inhibitor forming the 2-hydroxyethylphosphonate adduct on BChE at Ser198 while about 97% of the ethephon breaks down to ethylene (t1/2 = 11-48 h at pH 7.0) which is responsible for plant growth regulation.
        
Title: Insect nicotinic receptor interactions in vivo with neonicotinoid, organophosphorus, and methylcarbamate insecticides and a synergist Shao X, Xia S, Durkin KA, Casida JE Ref: Proc Natl Acad Sci U S A, 110:17273, 2013 : PubMed
The nicotinic acetylcholine (ACh) receptor (nAChR) is the principal insecticide target. Nearly half of the insecticides by number and world market value are neonicotinoids acting as nAChR agonists or organophosphorus (OP) and methylcarbamate (MC) acetylcholinesterase (AChE) inhibitors. There was no previous evidence for in vivo interactions of the nAChR agonists and AChE inhibitors. The nitromethyleneimidazole (NMI) analog of imidacloprid, a highly potent neonicotinoid, was used here as a radioligand, uniquely allowing for direct measurements of house fly (Musca domestica) head nAChR in vivo interactions with various nicotinic agents. Nine neonicotinoids inhibited house fly brain nAChR [(3)H]NMI binding in vivo, corresponding to their in vitro potency and the poisoning signs or toxicity they produced in intrathoracically treated house flies. Interestingly, nine topically applied OP or MC insecticides or analogs also gave similar results relative to in vivo nAChR binding inhibition and toxicity, but now also correlating with in vivo brain AChE inhibition, indicating that ACh is the ultimate OP- or MC-induced nAChR active agent. These findings on [(3)H]NMI binding in house fly brain membranes validate the nAChR in vivo target for the neonicotinoids, OPs and MCs. As an exception, the remarkably potent OP neonicotinoid synergist, O-propyl O-(2-propynyl) phenylphosphonate, inhibited nAChR in vivo without the corresponding AChE inhibition, possibly via a reactive ketene metabolite reacting with a critical nucleophile in the cytochrome P450 active site and the nAChR NMI binding site.
        
Title: Cycloxaprid insecticide: nicotinic acetylcholine receptor binding site and metabolism Shao X, Swenson TL, Casida JE Ref: Journal of Agricultural and Food Chemistry, 61:7883, 2013 : PubMed
Cycloxaprid (CYC) is a novel neonicotinoid prepared from the (nitromethylene)imidazole (NMI) analogue of imidacloprid. In this study we consider whether CYC is active per se or only as a proinsecticide for NMI. The IC50 values (nM) for displacing [(3)H]NMI binding are 43-49 for CYC and 2.3-3.2 for NMI in house fly and honeybee head membranes and 302 and 7.2, respectively, in mouse brain membranes, potency relationships interpreted as partial conversion of some CYC to NMI under the assay conditions. The 6-8-fold difference in toxicity of injected CYC and NMI to house flies is consistent with their relative potencies as in vivo nicotinic acetylcholine receptor (nAChR) inhibitors in brain measured with [(3)H]NMI binding assays. CYC metabolism in mice largely involves cytochrome P450 pathways without NMI as a major intermediate. Metabolites of CYC tentatively assigned are five monohydroxy derivatives and one each of dihydroxy, nitroso, and amino modifications. CYC appears be a proinsecticide, serving as a slow-release reservoir for NMI with selective activity for insect versus mammalian nAChRs.
        
Title: Neonicotinoid formaldehyde generators: possible mechanism of mouse-specific hepatotoxicity/hepatocarcinogenicity of thiamethoxam Swenson TL, Casida JE Ref: Toxicol Lett, 216:139, 2013 : PubMed
Thiamethoxam (TMX), an important insecticide, is hepatotoxic and hepatocarcinogenic in mice but not rats. Studies of Syngenta Central Toxicology Laboratory on species specificity in metabolism established that TMX is a much better substrate for mouse liver microsomal CYPs than the corresponding rat or human enzymes in forming desmethyl-TMX (dm-TMX), which is also hepatotoxic, and clothianidin (CLO), which is not hepatotoxic or hepatocarcinogenic. They proposed that TMX hepatotoxicity/hepatocarcinogencity is due to dm-TMX and a further metabolite desmethyl-CLO (dm-CLO) (structurally analogous to a standard inducible nitric oxide synthase inhibitor) acting synergistically. The present study considers formation of formaldehyde (HCHO) and N-methylol intermediates as an alternative mechanism of TMX hepatotoxicity/hepatocarcinogenicity. Comparison of neonicotinoid metabolism by mouse, rat and human microsomes with NADPH showed two important points. First, TMX and dm-TMX yield more HCHO than any other commercial neonicotinoid. Second, mouse microsomes give much higher conversion than rat or human microsomes. These observations provide an alternative hypothesis of HCHO and N-methylol intermediates from CYP-mediated oxidative oxadiazinane ring cleavage as the bioactivated hepatotoxicants. However, the proposed mono-N-methylol CYP metabolites are not observed, possibly further reacting in situ.
        
Title: The greening of pesticide-environment interactions: some personal observations Casida JE Ref: Environmental Health Perspectives, 120:487, 2012 : PubMed
BACKGROUND: Pesticide-environment interactions are bidirectional. The environment alters pesticides by metabolism and photodegradation, and pesticides in turn change the environment through nontarget or secondary effects. OBJECTIVES: Approximately 900 currently used commercial pesticides of widely diverse structures act by nearly a hundred mechanisms to control insects, weeds, and fungi, usually with minimal disruption of nature's equilibrium. Here I consider some aspects of the discovery, development, and use of ecofriendly or green pesticides (i.e., pesticides that are safe, effective, and biodegradable with minimal adverse secondary effects on the environment). Emphasis is given to research in my laboratory. DISCUSSION: The need for understanding and improving pesticide-environment interactions began with production of the first major insecticide approximately 150 years ago: The arsenical poison Paris Green was green in color but definitely not ecofriendly. Development and use of other pesticides has led to a variety of problems. Topics considered here include the need for high purity [e.g., hexachlorocyclohexane and polychloroborane isomers and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)], environmental degradation and the bioactivity of resulting photoproducts and metabolites, pesticide photochemistry (including the use of structural optimization, photostabilizers, and photosensitizers to achieve suitable persistence), the presence of multiple active ingredients in botanical insecticides, the need to consider compounds with common mechanisms of action, issues related to primary and secondary targets, and chemically induced or genetically modified changes in plant biochemistry. Many insecticides are bird, fish, and honeybee toxicants, whereas herbicides and fungicides pose fewer environmental problems. CONCLUSION: Six factors have contributed to the greening of pesticide-environment interactions: advances in pesticide chemistry and toxicology, banning of many chlorinated hydrocarbons, the development of new biochemical targets, increased reliance on genetically modified crops that reduce the amount and variety of pesticides applied, emphasis on biodegradability and environmental protection, and integrated pest- and pesticide-management systems.
        
Title: Curious about pesticide action Casida JE Ref: Journal of Agricultural and Food Chemistry, 59:2762, 2011 : PubMed
The safe and effective use of pesticides requires knowledge of their mode of action in pests and adverse effects in nontarget organisms coupled with an understanding of their metabolic activation and detoxification. The author and his laboratory colleagues were privileged to observe, participate in, and sometimes influence these developments for the past six decades. This review considers contributions of the Berkeley and Madison laboratories to understanding insecticides acting at voltage-gated sodium and GABA-gated chloride channels and the nicotinic receptor and at serine hydrolases and other targets as well as the action of insecticide synergists and selected herbicides and fungicides. Some of the discoveries gave new probes, radioligands, photoaffinity labeling reagents, and understanding of reactive intermediates that changed the course of pesticide investigations and related areas of science. The importance of coupling mode of action with metabolism and design with serendipity is illustrated with a wide variety of chemotypes.
        
Title: Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance Casida JE Ref: Journal of Agricultural and Food Chemistry, 59:2923, 2011 : PubMed
Neonicotinoids are one of the three principal insecticide chemotypes. The seven major commercial neonicotinoids are readily biodegraded by metabolic attack at their N-heterocyclylmethyl moiety, heterocyclic or acyclic spacer, and N-nitroimine, nitromethylene, or N-cyanoimine tip. Phase I metabolism is largely dependent on microsomal CYP450 isozymes with situ selectivity in hydroxylation, desaturation, dealkylation, sulfoxidation, and nitro reduction. Cytosolic aldehyde oxidase is a nitroreductase for some neonicotinoids. Phase II metabolism involves methylation, acetylation, and formation of glucuronide, glucoside, amino acid, and sulfate- and glutathione-derived conjugates. Some neonicotinoids act as proinsecticides with metabolism to more potent nicotinic agonists. Pest resistance is more commonly due to synergist-reversible CYP450 detoxification than to nAChR mutants or variants. Metabolites in some cases contribute to mammalian hepatotoxicity and carcinogenesis and in others to enhanced plant vigor and stress shields. These relationships explain much of neonicotinoid comparative toxicology and provide the basis for continued and improved safety and effectiveness of this chemotype.
        
Title: Activity-based protein profiling of organophosphorus and thiocarbamate pesticides reveals multiple serine hydrolase targets in mouse brain Nomura DK, Casida JE Ref: Journal of Agricultural and Food Chemistry, 59:2808, 2011 : PubMed
Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, a chemoproteomic platform, termed activity-based protein profiling, was used to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in the degradation of endocannabinoid signaling lipids, monoacylglycerol lipase, and fatty acid amide hydrolase were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants.
Endocannabinoids regulate energy balance and lipid metabolism by stimulating the cannabinoid receptor type 1 (CB1). Genetic deletion and pharmacological antagonism have shown that CB1 signaling is necessary for the development of obesity and related metabolic disturbances. However, the sufficiency of endogenously produced endocannabinoids to cause hepatic lipid accumulation and insulin resistance, independent of food intake, has not been demonstrated. Here, we show that a single administration of isopropyl dodecylfluorophosphonate (IDFP), perhaps the most potent pharmacological inhibitor of endocannabinoid degradation, increases hepatic triglycerides (TG) and induces insulin resistance in mice. These effects involve increased CB1 signaling, as they are mitigated by pre-administration of a CB1 antagonist (AM251) and in CB1 knockout mice. Despite the strong physiological effects of CB1 on hepatic lipid and glucose metabolism, little is known about the downstream targets responsible for these effects. To elucidate transcriptional targets of CB1 signaling, we performed microarrays on hepatic RNA isolated from DMSO (control), IDFP and AM251/IDFP-treated mice. The gene for the secreted glycoprotein lipocalin 2 (lcn2), which has been implicated in obesity and insulin resistance, was among those most responsive to alterations in CB1 signaling. The expression pattern of IDFP mice segregated from DMSO mice in hierarchal cluster analysis and AM251 pre-administration reduced (>50%) the majority (303 of 533) of the IDFP induced alterations. Pathway analysis revealed that IDFP altered expression of genes involved in lipid, fatty acid and steroid metabolism, the acute phase response, and amino acid metabolism in a CB1-dependent manner. PCR confirmed array results of key target genes in multiple independent experiments. Overall, we show that acute IDFP treatment induces hepatic TG accumulation and insulin resistance, at least in part through the CB1 receptor, and identify novel cannabinoid responsive genes.
        
Title: Neonicotinoid insecticides: highlights of a symposium on strategic molecular designs Tomizawa M, Casida JE Ref: Journal of Agricultural and Food Chemistry, 59:2883, 2011 : PubMed
Neonicotinoids are the newest of the five major classes of insecticides (the others are chlorinated hydrocarbons, organophosphorus compounds, methylcarbamates, and pyrethroids), and they make up approximately one-fourth of the world insecticide market. Nithiazine was the lead compound from Shell Development Co. in California later optimized by Shinzo Kagabu of Nihon Tokushu Noyaku Seizo to increase the potency and photostability, resulting in imidacloprid and thiacloprid. These discoveries are the basis for the International Award for Research in Agrochemicals of the American Chemical Society presented in 2010 to Professor Shinzo Kagabu. Five other neonicotinoids were added by others for the current set of seven commercial compounds. This symposium considers the progress in discovery and development of novel chemotype nicotinic insecticides with enhanced effectiveness, unique biological properties, and maximal safety. Chemorational approaches considered include physicochemical properties, metabolic activation and detoxification, and chemical and structural biology aspects potentially facilitating receptor structure-guided insecticide design.
        
Title: Unique neonicotinoid binding conformations conferring selective receptor interactions Tomizawa M, Casida JE Ref: Journal of Agricultural and Food Chemistry, 59:2825, 2011 : PubMed
Neonicotinoid agonists selectively act on the insect nicotinic acetylcholine receptor (nAChR). The molecular basis for this specificity is deciphered by comparisons of two acetylcholine binding proteins (AChBPs) with distinct pharmacological profiles that serve as structural homologues for the nAChR subtypes. Aplysia AChBP has high neonicotinoid sensitivity, whereas Lymnaea AChBP has low neonicotinoid sensitivity, pharmacologies reminiscent of insect and vertebrate nAChR subtypes, respectively. The ligand-receptor interactions for these AChBPs were established by chemical and structural neurobiology approaches. Neonicotinoids and nicotinoids bind in a single conformation with Aplysia AChBP, wherein the electronegative nitro or cyano pharmacophore of the neonicotinoid faces in a reversed orientation relative to the cationic nicotinoid functionality. For Lymnaea AChBP, the neonicotinoids have two binding conformations in this vertebrate receptor model, which are completely inverted relative to each other, whereas nicotinoids are nestled in only one conserved conformation. Therefore, the unique binding conformations of nicotinic agonists determine the selective receptor interactions.
        
Title: Receptor structure-guided neonicotinoid design Tomizawa M, Kagabu S, Casida JE Ref: Journal of Agricultural and Food Chemistry, 59:2918, 2011 : PubMed
Neonicotinoid agonists with a nitroimino pharmacophore are used worldwide for crop protection and animal health care. Chemical and structural biology investigations on the nicotinic acetylcholine receptor structure in the neonicotinoid-bound state revealed a unique niche beyond the nitro oxygen tip toward the loop D subsite. The nitroimino pharmacophore can be replaced to suitably fit the newly recognized cavity by acylimino [ horizontal lineNC(O)R] and phenoxycarbonylmino [ horizontal lineNC(O)OPh] variants. The horizontal lineNC(O)R analogues, where R is a hydrogen acceptor pyridine, pyrazine, or trifluoromethyl, showed high receptor potency, suggesting that the extended pharmacophore undergoes hydrogen bonding with the loop D Arg basic residue. The horizontal lineNC(O)OPh analogues had appreciably higher affinity with an electron-donating substituent on the phenyl ring than with an electron-withdrawing group, predicting that the benzene plane and loop D Trp indole form a face-to-edge aromatic interaction. These studies illustrate strategic ligand design combining the chemorational approach with the three-dimensional receptor structure.
The novel sulfoximine insecticide sulfoxaflor is as potent or more effective than the neonicotinoids for toxicity to green peach aphids (GPA, Myzus persicae). The action of sulfoxaflor was characterized at insect nicotinic acetylcholine receptors (nAChRs) using electrophysiological and radioligand binding techniques. When tested for agonist properties on Drosophila melanogaster Dalpha2 nAChR subunit co-expressed in Xenopus laevis oocytes with the chicken beta2 subunit, sulfoxaflor elicited very high amplitude (efficacy) currents. Sulfoximine analogs of sulfoxaflor were also agonists on Dalpha2/beta2 nAChRs, but none produced maximal currents equivalent to sulfoxaflor nor were any as toxic to GPAs. Additionally, except for clothianidin, none of the neonicotinoids produced maximal currents as large as those produced by sulfoxaflor. These data suggest that the potent insecticidal activity of sulfoxaflor may be due to its very high efficacy at nAChRs. In contrast, sulfoxaflor displaced [(3)H]imidacloprid (IMI) from GPA nAChR membrane preparations with weak affinity compared to most of the neonicotinoids examined. The nature of the interaction of sulfoxaflor with nAChRs apparently differs from that of IMI and other neonicotinoids, and when coupled with other known characteristics (novel chemical structure, lack of cross-resistance, and metabolic stability), indicate that sulfoxaflor represents a significant new insecticide option for the control of sap-feeding insects.
        
Title: Michael Elliott's billion dollar crystals and other discoveries in insecticide chemistry Casida JE Ref: Pest Manag Sci, 66:1163, 2010 : PubMed
The crowning achievement for Michael Elliott came in 1973 when his most outstanding candidate insecticide from 25 years of research crystallized from hexane solution. The stereochemically pure crystalline compound was the most potent synthetic insecticide ever made until that time, and it was highly selective for insects compared with mammals. It was given the name deltamethrin. Sequential stereospecific crystallization to isolate the most potent epimer and base-catalyzed racemization of the remaining less active isomer could be used to produce deltamethrin efficiently on a large scale; it became the billion dollar crystals. Elliott's discoveries at Rothamsted in England with Norman Janes and David Pulman of resmethrin, permethrin, cypermethrin and ultimately deltamethrin provided crop protection and malaria control for millions of people. Michael also laid the background for lipophilic amide, dithiane and other insecticides and nerve probes that are not involved in pyrethroid cross-resistance. Some aspects of these investigations were best conducted at Berkeley, where Michael studied pyrethrins in 1969, synthetic pyrethroids in 1974 and alternative insecticides in 1986-1988. This review considers Michael's seminal discoveries in insecticide chemistry, with emphasis on his Berkeley years.
        
Title: S-Arachidonoyl-2-thioglycerol synthesis and use for fluorimetric and colorimetric assays of monoacylglycerol lipase Casida JE, Gulevich AG, Sarpong R, Bunnelle EM Ref: Bioorganic & Medicinal Chemistry, 18:1942, 2010 : PubMed
We report the first synthesis of 2-thioglycerol and S-arachidonoyl-2-thioglycerol (the thioester analog of the endocannabinoid 2-arachidonoylglycerol) in an eight or nine step procedure with a yield of approximately 25% and establish the use of this substrate for maleimide-based fluorescent and dithiobis(2-nitrobenzoic acid)-based colorimetric assays of human recombinant monoacylglycerol (MAG) lipase (hMAGL) and human brain membrane MAG hydrolase activity. Inhibitor structure-activity relationships observed here for hMAGL and 2-ATG correlate well (r(2)=0.93, n=9) with earlier findings for mouse brain MAG hydrolase with non-thiol substrates.
Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl- and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl-neonicotinoids induce SA responses associated with enhanced stress tolerance.
        
Title: Pest toxicology: the primary mechanisms of pesticide action Casida JE Ref: Chemical Research in Toxicology, 22:609, 2009 : PubMed
Pesticides are used to control pests before they harm us or our crops. They are selective toxicants in the form and manner used. Pesticides must be effective without human or crop injury. They must also be safe relative to human and environmental toxicology. The study of how the pesticide works on the pest is referred to here as pest toxicology. About 700 pesticides, including insecticides, herbicides, and fungicides, act on perhaps 95 biochemical targets in pest insects, weeds, and destructive fungi. Current insecticides act primarily on four nerve targets, i.e., acetylcholinesterase, the voltage-gated chloride channel, the acetylcholine receptor, and the gamma-aminobutyric acid receptor, systems which are present in animals but not plants. Herbicides act mostly on plant specific pathways by blocking photosynthesis, carotenoid synthesis, or aromatic and branched chain amino acid synthesis essential in plants but not mammals. Many fungicides block ergosterol (the fungal sterol) or tubulin biosynthesis or cytochrome c reductase, while others disrupt basic cellular functions. A major limiting factor in the continuing use of almost all pesticides is the selection of strains not only resistant to the selecting or pressuring compounds but also cross-resistant to other pesticides acting at the same target. One approach to reinstating control is to shift from compounds with the resistant target site or mode of action to another set which have a sensitive target. This type of pesticide management led to the formation of Resistance Action Committees for insecticides, herbicides, and fungicides with very knowledgable experts to define resistance groups, which are in fact listings of primary target sites in pest toxicology. Continued success in pest and pesticide management requires an understanding of comparative biochemistry and molecular toxicology considering pests, people, and crops. Defining and applying the principles of pest toxicology are critical to food production and human health.
        
Title: Bis-neonicotinoid insecticides: Observed and predicted binding interactions with the nicotinic receptor Ohno I, Tomizawa M, Durkin KA, Casida JE, Kagabu S Ref: Bioorganic & Medicinal Chemistry Lett, 19:3449, 2009 : PubMed
The bis-pharmacophore approach applied to neonicotinoid insecticides reveals high binding affinity for heptamethylene bis-N(3),N(3')-imidacloprid fitting a nicotinic acetylcholine receptor model wherein the chloropyridine moieties contact loops E and F and the alkylene linker bridges these two distant domains.
        
Title: Neonicotinoid substituents forming a water bridge at the nicotinic acetylcholine receptor Ohno I, Tomizawa M, Durkin KA, Casida JE, Kagabu S Ref: Journal of Agricultural and Food Chemistry, 57:2436, 2009 : PubMed
Neonicotinoid insecticides are extensively used for crop protection. The chloropyridinyl or chlorothiazolyl nitrogen and tetrahydrofuryl oxygen atoms of neonicotinoids serve as hydrogen acceptors at the target site. This investigation designs and prepares neonicotinoid probes to understand the structure-activity relationships (SARs) at the target site focusing on the water-mediated ligand-protein interactions. 2-Nitroiminoimidazolidine analogues with hydrogen-acceptor N-CH(2)CH(2)CH(2)F and N-CH(2)CH(2)C(O)CH(3) substituents showed higher binding affinities to the Drosophila melanogaster nicotinic receptor than probes with different hydrogen-bonding points in location and capability, suggesting that the appropriately positioned fluorine or carbonyl oxygen plays an important role on hydrogen-bond formation. Their binding site interactions were predicted using a crystal structure of the acetylcholine binding protein. The fluorine or carbonyl oxygen forms a water bridge to Ile-118 (and/or Ile-106) at the binding domain, consistent with that of neonicotinoids with a chloropyridinylmethyl, chlorothiazolylmethyl, or tetrahydrofurylmethyl moiety. Therefore, the present SAR study on binding site interactions helps design potent neonicotinoids with novel substituents.
        
Title: Molecular features of neonicotinoid pharmacophore variants interacting with the insect nicotinic receptor Ohno I, Tomizawa M, Durkin KA, Naruse Y, Casida JE, Kagabu S Ref: Chemical Research in Toxicology, 22:476, 2009 : PubMed
Molecular interactions of neonicotinoid insecticides with the nicotinic acetylcholine receptor have been mapped by chemical and structural neurobiology approaches, thereby encouraging the biorational design of novel nicotinic ligands. This investigation designs, prepares, and evaluates the target site potency of neonicotinoid analogues with various types of electronegative pharmacophores and subsequently predicts their molecular recognition in the ligand-binding pocket. The N-nitroimino (NNO2) neonicotinoid pharmacophore is systematically replaced by N-nitrosoimino (NNO), N-formylimino [NC(O)H], N-alkyl- and N-arylcarbonylimino [NC(O)R], and N-alkoxy- and N-aryloxycarbonylimino [NC(O)OR] variants. The NNO analogues essentially retain the binding affinity of the NNO2 compounds, while the isosteric NC(O)H congeners have diminished potency. The NC(O)R and NC(O)OR analogues, where R is methyl, trifluoromethyl, phenyl, or pyridin-3-yl, have moderate to high affinities. Orientation of the tip oxygen plays a critical role for binding of the NNO and NC(O)H pharmacophores, and the extended NC(O)R and NC(O)OR moieties are embraced by unique binding domains.
        
Title: Enzymes and inhibitors in neonicotinoid insecticide metabolism Shi X, Dick RA, Ford KA, Casida JE Ref: Journal of Agricultural and Food Chemistry, 57:4861, 2009 : PubMed
Neonicotinoid insecticide metabolism involves considerable substrate specificity and regioselectivity of the relevant CYP450, aldehyde oxidase, and phase II enzymes. Human CYP450 recombinant enzymes carry out the following conversions: CYP3A4, 2C19, and 2B6 for thiamethoxam (TMX) to clothianidin (CLO); 3A4, 2C19, and 2A6 for CLO to desmethyl-CLO; 2C19 for TMX to desmethyl-TMX. Human liver aldehyde oxidase reduces the nitro substituent of CLO to nitroso much more rapidly than it does that of TMX. Imidacloprid (IMI), CLO, and several of their metabolites do not give detectable N-glucuronides but 5-hydroxy-IMI, 4,5-diol-IMI, and 4-hydroxythiacloprid are converted to O-glucuronides in vitro with mouse liver microsomes and UDP-glucuronic acid or in vivo in mice. Mouse liver cytosol with S-adenosylmethionine converts desmethyl-CLO to CLO but not desmethyl-TMX to TMX. Two organophosphorus CYP450 inhibitors partially block IMI, thiacloprid, and CLO metabolism in vivo in mice, elevating brain and liver levels of the parent compounds while reducing amounts of the hydroxylated metabolites.
        
Title: Molecular recognition of neonicotinoid insecticides: the determinants of life or death Tomizawa M, Casida JE Ref: Acc Chem Res, 42:260, 2009 : PubMed
Until the mid-20th century, pest insect control in agriculture relied on largely inorganic and botanical insecticides, which were inadequate. Then, the remarkable insecticidal properties of several organochlorines, organophosphates, methylcarbamates, and pyrethroids were discovered, leading to an arsenal of synthetic organics. The effectiveness of these insecticides, however, diminished over time due to the emergence of resistant insect strains with less sensitive molecular targets in their nervous systems. This created a critical need for a new type of neuroactive insecticide with a different yet highly sensitive target. Nicotine in tobacco extract was for centuries the best available agent to prevent sucking insects from damaging crops, although this alkaloid was hazardous to people and not very effective. The search for unusual structures and optimization revealed a new class of potent insecticides, known as neonicotinoids, which are similar to nicotine in their structure and action as agonists of the nicotinic acetylcholine receptor (nAChR). Fortunately, neonicotinoids are much more toxic to insects than mammals due in large part to differences in their binding site interactions at the corresponding nAChRs. This Account discusses the progress that has been made in defining the structural basis of neonicotinoid and nicotinoid potency and selectivity. The findings are based on comparisons of two acetylcholine binding proteins (AChBPs) with distinct pharmacological profiles that serve as structural surrogates for the extracellular ligand-binding domain of the nAChRs. Saltwater mollusk (Aplysia californica) AChBP has high neonicotinoid sensitivity, whereas freshwater snail (Lymnaea stagnalis) AChBP has low neonicotinoid and high nicotinoid sensitivities, pharmacologies reminiscent of insect and vertebrate nAChR subtypes, respectively. The ligand-receptor interactions for these AChBPs were established by photoaffinity labeling and X-ray crystallography. Both azidopyridinyl neonicotinoid and nicotinoid photoprobes bind in a single conformation with Aplysia AChBP; this is consistent with high-resolution crystal structures. Surprisingly, though, the electronegative nitro or cyano moiety of the neonicotinoid faced in a reversed orientation relative to the cationic nicotinoid functionality. For the Lymnaea AChBP, the azidoneonicotinoid probes modified two distinct and distant sites, while the azidonicotinoid probes, surprisingly, derivatized only one point. This meant that the neonicotinoids have two bound conformations in the vertebrate receptor model, which are completely inverted relative to each other, whereas nicotinoids appear buried in only one conserved conformation. Therefore, the unique binding conformations of nicotinic agonists in these insect and vertebrate receptor homologues define the basis for molecular recognition of neonicotinoid insecticides as the determinants of life or death.
Agonists activating nicotinic acetylcholine receptors (nAChR) include potential therapeutic agents and also toxicants such as epibatidine and neonicotinoid insecticides with a chloropyridinyl substituent. Nicotinic agonist interactions with mollusk (Aplysia californica) acetylcholine binding protein, a soluble surrogate of the nAChR extracellular domain, are precisely defined by scanning with 17 methionine and tyrosine mutants within the binding site by photoaffinity labeling with 5-azido-6-chloropyridin-3-yl probes that have similar affinities to their nonazido counterparts. Methionine and tyrosine are the only residues found derivatized, and their reactivity exquisitely depends on the direction of the azido moiety and its apposition to the reactive amino acid side chains.
        
Title: Liquid chromatography-tandem mass spectrometric ion-switching determination of chlorantraniliprole and flubendiamide in fruits and vegetables Caboni P, Sarais G, Angioni A, Vargiu S, Pagnozzi D, Cabras P, Casida JE Ref: Journal of Agricultural and Food Chemistry, 56:7696, 2008 : PubMed
The anthranilic and phthalic diamides, chlorantraniliprole (CAP) and flubendiamide (FLU), respectively, represent a new class of very effective insecticides that activate the ryanodine-sensitive intracellular calcium release channel (ryanodine receptor). This paper reports an analytical method for the simultaneous determination of the two insecticides on fruits and vegetables by liquid chromatography-electrospray tandem mass spectrometry operated in the positive and negative ionization switching mode. The two diamides were extracted with acetonitrile and separated on a Zorbax Column Eclipse XDB C8 (4.6 mm x 150 mm i.d., 3 microm) by isocratic elution with a mobile phase consisting of acetonitrile and water with 0.1% formic acid pumped at a flow rate of 0.4 mL/min. The diamides were selectively detected by multiple reaction monitoring for transitions of proton adduct precursor ions simultaneously: positive m/z 484.3-->285 for CAP, m/z 445.5-->169 for internal standard, and negative m/z 681.4-->253 for FLU. For CAP calibration in the positive mode was linear over a working range of 2 to 1000 microg/L with r > 0.992. The limit of detection (LOD) and limit of quantification (LOQ) for CAP were 0.8 and 1.6 microg/kg, respectively. For FLU in the negative mode the corresponding values were 1-1000 microg/L for linear working range, with r > 0.996 and 0.4 and 0.8 microg/L for LOD and LOQ, respectively. Moreover, the presence of interfering compounds in the fruit and vegetable extracts was found to be minimal. Due to the linear behavior of the MS detector response for the two analytes, it was concluded that the multiple reaction transitions of molecular ions in the ion-switching mode can be used for analytical purposes, that is, for identification and quantification of diamides in fruit and vegetable extracts at trace levels.
        
Title: Organophosphate-sensitive lipases modulate brain lysophospholipids, ether lipids and endocannabinoids Casida JE, Nomura DK, Vose SC, Fujioka K Ref: Chemico-Biological Interactions, 175:355, 2008 : PubMed
Lipases play key roles in nearly all cells and organisms. Potent and selective inhibitors help to elucidate their physiological functions and associated metabolic pathways. Organophosphorus (OP) compounds are best known for their anticholinesterase properties but selectivity for lipases and other targets can also be achieved through structural optimization. This review considers several lipid systems in brain modulated by highly OP-sensitive lipases. Neuropathy target esterase (NTE) hydrolyzes lysophosphatidylcholine (lysoPC) as a preferred substrate. Gene deletion of NTE in mice is embryo lethal and the heterozygotes are hyperactive. NTE is very sensitive in vitro and in vivo to direct-acting OP delayed neurotoxicants and the related NTE-related esterase (NTE-R) is also inhibited in vivo. KIAA1363 hydrolyzes acetyl monoalkylglycerol ether (AcMAGE) of the platelet-activating factor (PAF) de novo biosynthetic pathway and is a marker of cancer cell invasiveness. It is also a detoxifying enzyme that hydrolyzes chlorpyrifos oxon (CPO) and some other potent insecticide metabolites. Monoacylglycerol lipase and fatty acid amide hydrolase regulate endocannabinoid levels with roles in motility, pain and memory. Inhibition of these enzymes in mice by OPs, such as isopropyl dodecylfluorophosphonate (IDFP), leads to dramatic elevation of brain endocannabinoids and distinct cannabinoid-dependent behavior. Hormone-sensitive lipase that hydrolyzes cholesteryl esters and diacylglycerols is a newly recognized in vivo CPO- and IDFP-target in brain. The OP chemotype can therefore be used in proteomic and metabolomic studies to further elucidate the biological function and toxicological significance of lipases in lipid metabolism. Only the first steps have been taken to achieve appropriate selective action for OP therapeutic agents.
        
Title: Comparative metabolism and pharmacokinetics of seven neonicotinoid insecticides in spinach Ford KA, Casida JE Ref: Journal of Agricultural and Food Chemistry, 56:10168, 2008 : PubMed
The metabolism of seven commercial neonicotinoid insecticides was compared in spinach seedlings (Spinacia oleracea) using HPLC-DAD and LC-MSD to analyze the large number and great variety of metabolites. The parent neonicotinoid levels in the foliage following hydroponic treatment varied from differences in uptake and persistence. The metabolic reactions included nitro reduction, cyano hydrolysis, demethylation, sulfoxidation, imidazolidine and thiazolidine hydroxylation and olefin formation, oxadiazine hydroxylation and ring opening, and chloropyridinyl dechlorination. The identified phase I plant metabolites were generally the same as those in mammals, but the phase II metabolites differed in the conjugating moieties. Novel plant metabolites were various neonicotinoid-derived O- and N-glucosides and -gentiobiosides and nine amino acid conjugates of chloropyridinylcarboxylic acid. Metabolites known to be active on nicotinic acetylcholine receptors included the desnitro- and descyanoguanidines and olefin derivatives. The findings highlight both metabolites common to several neonicotinoids and those that are compound specific.
Delta(9)-tetrahydrocannabinol (THC), the psychoactive ingredient of marijuana, has useful medicinal properties but also undesirable side effects. The brain receptor for THC, CB(1), is also activated by the endogenous cannabinoids anandamide and 2-arachidonylglycerol (2-AG). Augmentation of endocannabinoid signaling by blockade of their metabolism may offer a more selective pharmacological approach compared with CB(1) agonists. Consistent with this premise, inhibitors of the anandamide-degrading enzyme fatty acid amide hydrolase (FAAH) produce analgesic and anxiolytic effects without cognitive defects. In contrast, we show that dual blockade of the endocannabinoid-degrading enzymes monoacylglycerol lipase (MAGL) and FAAH by selected organophosphorus agents leads to greater than ten-fold elevations in brain levels of both 2-AG and anandamide and to robust CB(1)-dependent behavioral effects that mirror those observed with CB(1) agonists. Arachidonic acid levels are decreased by the organophosphorus agents in amounts equivalent to elevations in 2-AG, which indicates that endocannabinoid and eicosanoid signaling pathways may be coordinately regulated in the brain.
The structure-activity relationships of organophosphorus (OP) and organosulfur compounds were examined in vitro and in vivo as inhibitors of mouse brain monoacylglycerol lipase (MAGL) hydrolysis of 2-arachidonoylglycerol (2-AG) and agonist binding at the CB1 receptor. Several compounds showed exceptional potency toward MAGL activity with IC(50) values of 0.1-10 nM in vitro and high inhibition at 10mg/kg intraperitoneally in mice. We find for the first time that MAGL activity is a major in vivo determinant of 2-AG and arachidonic acid levels not only in brain but also in spleen, lung, and liver. Apparent direct OP inhibition of CB1 agonist binding may be due instead to metabolic stabilization of 2-AG in brain membranes as the actual inhibitor.
Serine hydrolase KIAA1363 is an acetyl monoalkylglycerol ether (AcMAGE) hydrolase involved in tumor cell invasiveness. It is also an organophosphate (OP) insecticide-detoxifying enzyme. The key to understanding these dual properties was the use of KIAA1363 +/+ (wildtype) and -/- (gene deficient) mice to define the role of this enzyme in brain and other tissues and its effectiveness in vivo in reducing OP toxicity. KIAA1363 was the primary AcMAGE hydrolase in brain, lung, heart and kidney and was highly sensitive to inactivation by chlorpyrifos oxon (CPO) (IC50 2 nM) [the bioactivated metabolite of the major insecticide chlorpyrifos (CPF)]. Although there was no difference in hydrolysis product monoalkylglycerol ether (MAGE) levels in +/+ and -/- mouse brains in vivo, isopropyl dodecylfluorophosphonate (30 mg/kg) and CPF (100 mg/kg) resulted in 23-51% decrease in brain MAGE levels consistent with inhibition of AcMAGE hydrolase activity. On incubating +/+ and -/- brain membranes with AcMAGE and cytidine-5'-diphosphocholine, the absence of KIAA1363 activity dramatically increased de novo formation of platelet-activating factor (PAF) and lyso-PAF, signifying that metabolically-stabilized AcMAGE can be converted to this bioactive lipid in brain. On considering detoxification, KIAA1363 -/- mice were significantly more sensitive than +/+ mice to ip-administered CPF (100 mg/kg) and parathion (10 mg/kg) with increased tremoring and mortality that correlated for CPF with greater brain acetylcholinesterase inhibition. Docking AcMAGE and CPO in a KIAA1363 active site model showed similar positioning of their acetyl and trichloropyridinyl moieties, respectively. This study establishes the relevance of KIAA1363 in ether lipid metabolism and OP detoxification.
The endocannabinoid (EC) system regulates food intake and energy metabolism. Cannabinoid receptor type 1 (CB1) antagonists show promise in the treatment of obesity and its metabolic consequences. Although the reduction in adiposity resulting from therapy with CB1 antagonists may not account fully for the concomitant improvements in dyslipidemia, direct effects of overactive EC signaling on plasma lipoprotein metabolism have not been documented. The present study used a chemical approach to evaluate the direct effects of increased EC signaling in mice by inducing acute elevations of endogenously produced cannabinoids through pharmacological inhibition of their enzymatic hydrolysis by isopropyl dodecylfluorophosphonate (IDFP). Acute IDFP treatment increased plasma levels of triglyceride (TG) (2.0- to 3.1-fold) and cholesterol (1.3- to 1.4-fold) in conjunction with an accumulation in plasma of apolipoprotein (apo)E-depleted TG-rich lipoproteins. These changes did not occur in either CB1-null or apoE-null mice, were prevented by pretreatment with CB1 antagonists, and were not associated with reduced hepatic apoE gene expression. Although IDFP treatment increased hepatic mRNA levels of lipogenic genes (Srebp1 and Fas), there was no effect on TG secretion into plasma. Instead, IDFP treatment impaired clearance of an intravenously administered TG emulsion, despite increased postheparin lipoprotein lipase activity. Therefore, overactive EC signaling elicits an increase in plasma triglyceride levels associated with reduced plasma TG clearance and an accumulation in plasma of apoE-depleted TG-rich lipoproteins. These findings suggest a role of CB1 activation in the pathogenesis of obesity-related hypertriglyceridemia and underscore the potential efficacy of CB1 antagonists in treating metabolic disease.
        
Title: Atomic interactions of neonicotinoid agonists with AChBP: molecular recognition of the distinctive electronegative pharmacophore Talley TT, Harel M, Hibbs RE, Radic Z, Tomizawa M, Casida JE, Taylor P Ref: Proc Natl Acad Sci U S A, 105:7606, 2008 : PubMed
Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 A in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids.
        
Title: Potency and selectivity of trifluoroacetylimino and pyrazinoylimino nicotinic insecticides and their fit at a unique binding site niche Tomizawa M, Kagabu S, Ohno I, Durkin KA, Casida JE Ref: Journal of Medicinal Chemistry, 51:4213, 2008 : PubMed
Neonicotinoid agonists with a nitroimino or cyanoimino pharmacophore are the newest of the four most important classes of insecticides. Our studies on the nicotinic receptor structure in the neonicotinoid-bound state revealed a unique niche of about 6 A depth beyond the nitro oxygen or cyano nitrogen tip. The N-substituted imino pharmacophore was therefore extended to fill the gap. Excellent target site selectivity with high insecticidal activity and low toxicity to mammals were achieved rivaling those of the current neonicotinoid insecticides as illustrated here by 3-(6-chloropyridin-3-ylmethyl)-2-trifluoroacetyliminothiazoline and its pyrazinoylimino analogue.
Neuropathy target esterase (NTE) plays critical roles in embryonic development and maintenance of peripheral axons. It is a secondary target of some organophosphorus toxicants including analogs of insecticides and chemical warfare agents. Although the mechanistic role of NTE in vivo is poorly defined, it is known to hydrolyze lysophosphatidylcholine (LPC) in vitro and may protect cell membranes from cytotoxic accumulation of LPC. To determine the cellular function of NTE, Neuro-2a and COS-7 cells were transfected with a full-length human NTE-containing plasmid yielding recombinant NTE (rNTE). We find the same inhibitor sensitivity and specificity profiles for rNTE assayed with LPC or phenyl valerate (a standard NTE substrate) and that this correlation extends to the LPC hydrolases of human brain, lymphocytes and erythrocytes. All of these LPC hydrolases are therefore very similar to each other in respect to a conserved inhibitor binding site conformation. NTE is expressed in brain and lymphocytes and contributes to LPC hydrolase activities in these tissues. The enzyme or enzymes responsible for erythrocyte LPC hydrolase activity remain to be identified. We also show that rNTE protects Neuro-2a and COS-7 cells from exogenous LPC cytotoxicity. Expression of rNTE in Neuro-2a cells alters their phospholipid balance (analyzed by liquid chromatography-mass spectrometry with single ion monitoring) by lowering LPC-16:0 and LPC-18:0 and elevating glycerophosphocholine without a change in phosphatidylcholine-16:0/18:1 or 16:0/18:2. NTE therefore serves an important function in LPC homeostasis and action.
        
Title: Glutathione S-transferase conjugation of organophosphorus pesticides yields S-phospho-, S-aryl-, and S-alkylglutathione derivatives Fujioka K, Casida JE Ref: Chemical Research in Toxicology, 20:1211, 2007 : PubMed
Pesticide detoxification is a central feature of selective toxicity and safety evaluation. Two of the principal enzymes involved are GSH S-transferases (GSTs) and cytochrome P450s acting alone and together. More than 100 pesticides are organophosphorus (OP) compounds, but with few exceptions, their GSH conjugates have not been directly observed in vitro or in vivo. The major insecticides chlorpyrifos (CP) and diazinon are of particular interest as multifunctional substrates with diverse metabolites, while ClP(S)(OEt) 2 and the cotton defoliant tribufos are possible precursors of phosphorylated GSH conjugates. Formation of GSH conjugates by GST with GSH was studied in vitro with and without metabolic activation by human liver microsomes or P450 3A4 with NADPH. Metabolites were analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Five GSH conjugates were identified from CP and chlorpyrifos oxon (CPO), i.e., GSCP and GSCPO in which the 6-chloro substituent of CP and CPO, respectively, is displaced by GSH; S-(3,5,6-trichloropyridin-2-yl)glutathione; S-(3,5-dichloro-6-hydroxypyridin-2-yl)glutathione; and S-ethylglutathione. GST of a human liver microsomal preparation but not P450 3A4 with GSH metabolized CP to GSCP. With GST and GSH, diazinon and diazoxon gave S-(2-isopropyl-4-methylpyrimidin-6-yl)glutathione and ClP(S)(OEt) 2 yielded GSP(S)(OEt) 2. With microsomes, NADPH, GST, and GSH tribufos gave GSP(O)(SBu) 2. The liver of intraperitoneally treated mice contained GSCP from CP, GSP(S)(OEt) 2 from ClP(S)(OEt) 2, and GSP(O)(SBu) 2 from tribufos. GSP(S)(OEt) 2 and GSP(O)(SBu) 2 are the first S-phosphoglutathione metabolites observed in vitro and in vivo directly by LC-ESI-MS. Nine other OP pesticides gave only O-dealkylation in the GST/GSH system. GST-catalyzed metabolism joins P450s and hydrolases as important contributors to OP detoxification.
        
Title: Insect muscarinic acetylcholine receptor: pharmacological and toxicological profiles of antagonists and agonists Honda H, Tomizawa M, Casida JE Ref: Journal of Agricultural and Food Chemistry, 55:2276, 2007 : PubMed
The insect muscarinic acetylcholine receptor (mAChR) is evaluated as a potential target for insecticide action. The mammalian M2/M4-selective antagonist radioligand [3H]AF-DX 384 (a pirenzepine analogue) binds to Drosophila mAChR at a single high-affinity site identical to that for the nonselective antagonist [3H]quinuclidinyl benzilate (QNB) and with a pharmacological profile distinct from that of all mammalian mAChR subtypes. Three nonselective antagonists (QNB, scopolamine, and atropine) show the highest affinity (Ki=0.5-2.4 nM) at the Drosophila target, and AF-DX 384 and M3-selective 4-DAMP (dimethyl-4-(diphenylacetoxy)piperidinium iodide) rank next in potency (Ki=5-18 nM). Eleven muscarinic antagonists generally exhibit higher affinity than eight agonists. On injection into houseflies, the antagonists 4-DAMP and (S)-(+)-dimethindene produce suppressed movement, the agonist (methyloxadiazolyl)quinuclidine causes knockdown and tremors, and all of them inhibit [3H]QNB binding ex vivo, indicating possible mAChR-mediated intoxication. The insect mAChR warrants continuing study in lead generation to discover novel insecticides.
Nicotinic acetylcholine (ACh) receptor (nAChR) agonists are potential therapeutic agents for neurological dysfunction. In the present study, the homopentameric mollusk ACh binding protein (AChBP), used as a surrogate for the extracellular ligand-binding domain of the nAChR, was specifically derivatized by the highly potent agonist azidoepibatidine (AzEPI) prepared as a photoaffinity probe and radioligand. One EPI-nitrene photoactivated molecule was incorporated in each subunit interface binding site based on analysis of the intact derivatized protein. Tryptic fragments of the modified AChBP were analyzed by collision-induced dissociation and Edman sequencing of radiolabeled peptides. Each specific EPI-nitrene-modified site involved either Tyr195 of loop C on the principal or (+)-face or Met116 of loop E on the complementary or (-)-face. The two derivatization sites were observed in similar frequency, providing evidence of the reactivity of the azido/nitrene probe substituent and close proximity to both residues. [3H]AzEPI binds to the alpha4beta2 nAChR at a single high-affinity site and photoaffinity-labels only the alpha4 subunit, presumably modifying Tyr225 spatially corresponding to Tyr195 of AChBP. Phe137 of the beta2 nAChR subunit, equivalent to Met116 of AChBP, conceivably lacks sufficient reactivity with the nitrene generated from the probe. The present photoaffinity labeling in a physiologically relevant condition combined with the crystal structure of AChBP allows development of precise structural models for the AzEPI interactions with AChBP and alpha4beta2 nAChR. These findings enabled us to use AChBP as a structural surrogate to define the nAChR agonist site.
Two types of structurally similar nicotinic agonists have very different biological and physicochemical properties. Neonicotinoids, important insecticides including imidacloprid and thiacloprid, are nonprotonated and selective for insects and their nicotinic receptors, whereas nicotinoids such as nicotine and epibatidine are cationic and selective for mammalian systems. We discovered that a mollusk acetylcholine binding protein (AChBP), as a structural surrogate for the extracellular ligand-binding domain of the nicotinic receptor, is similarly sensitive to neonicotinoids and nicotinoids. It therefore seemed possible that the proposed very different interactions of the neonicotinoids and nicotinoids might be examined with a single AChBP by using optimized azidochloropyridinyl photoaffinity probes. Two azidoneonicotinoids with a nitro or cyano group were compared with the corresponding desnitro or descyano azidonicotinoids. The four photoactivated nitrene probes modified AChBP with up to one agonist for each subunit based on analysis of the intact derivatized protein. Identical modification sites were observed by collision-induced dissociation analysis for the neonicotinoids and nicotinoids with similar labeling frequency of Tyr-195 of loop C and Met-116 of loop E at the subunit interface. The nitro- or cyano-substituted guanidine/amidine planes of the neonicotinoids provide a unique electronic conjugation system to interact with loop C Tyr-188. The neonicotinoid nitro oxygen and cyano nitrogen contact loop C Cys-190/Ser-189, whereas the cationic head of the corresponding nicotinoids is inverted for hydrogen-bonding and cation-pi contact with Trp-147 and Tyr-93. These structural models based on AChBP directly map the elusive neonicotinoid binding site and further describe the molecular determinants of agonists on nicotinic receptors.
        
Title: Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants Vose SC, Holland NT, Eskenazi B, Casida JE Ref: Toxicol Appl Pharmacol, 224:98, 2007 : PubMed
Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC50 values of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined.
        
Title: Chloropyridinyl neonicotinoid insecticides: diverse molecular substituents contribute to facile metabolism in mice Ford KA, Casida JE Ref: Chemical Research in Toxicology, 19:944, 2006 : PubMed
Title: Insect nicotinic acetylcholine receptors: neonicotinoid binding site specificity is usually but not always conserved with varied substituents and species Honda H, Tomizawa M, Casida JE Ref: Journal of Agricultural and Food Chemistry, 54:3365, 2006 : PubMed
The diversity of neonicotinoid insecticides acting as insect nicotinic acetylcholine (ACh) receptor (nAChR) agonists is illustrated by imidacloprid (IMI) with chloropyridinylmethyl (CPM) and N-nitroimine substituents, dinotefuran (DIN) with tetrahydrofurylmethyl (TFM) and N-nitroimine moieties, and acetamiprid (ACE) with CPM and N-cyanoimine groups. These three neonicotinoids are used here as radioligands to test the hypothesis that they all bind to the same site in the same way in both fruit flies (Drosophila melanogaster) and a leafhopper pest (Homalodisca coagulata): that is, neonicotinoid binding site specificity is conserved in the insect nAChRs. Multiple approaches show that [3H]IMI and [3H]ACE interact with an identical site in both species. However, although [3H]DIN binds with high affinity in both insects, its pharmacological profile in Homalodisca is surprisingly unique, with high sensitivity to some TFM-containing compounds and ACh. The TFM moiety of DIN may bind in a different orientation compared to the CPM group of IMI and ACE.
        
Title: Neo-nicotinoid metabolic activation and inactivation established with coupled nicotinic receptor-CYP3A4 and -aldehyde oxidase systems Honda H, Tomizawa M, Casida JE Ref: Toxicol Lett, 161:108, 2006 : PubMed
Two important enzymes in metabolism of the principal neo-nicotinoid insecticide imidacloprid are liver microsomal CYP3 A4 and cytosolic aldehyde oxidase (AOX). CYP3A4 oxidation at several molecular sites and AOX reduction at the nitro substituent result in either an increase (activation) or decrease (inactivation) of agonist potency at nicotinic acetylcholine receptors (nAChRs), both insect and vertebrate alpha 4beta 2. This study evaluates activation or inactivation of 11 neo-nicotinoids in a continuous two-step system coupling metabolism and receptor binding. For metabolism, the neo-nicotinoid is incubated with CYP3A4 and NADPH or AOX with the cosubstrate N-methyl-nicotinamide, terminating the reaction with ketoconazole or menadione, respectively, to inhibit further conversion. For receptor assay, either the Drosophila nAChR and [(3)H]imidacloprid or the alpha4 beta2 nicotinic receptor and [(3)H](-)-nicotine are added to determine changes in neo-nicotinoid potency. With the Drosophila nAChR assay, the N-methyl compounds N-methyl-imidacloprid and thiamethoxam are activated 4.5-29-fold by CYP3 A4 whereas nine other neo-nicotinoids are not changed in potency. With the vertebrate alpha4 beta2 nAChR, AOX enhances imidacloprid potency but CYP3 A4 does not. The AOX system coupled with the Drosophila receptor strongly inactivates clothianidin, dinotefuran, imidacloprid, desmethyl-thiamethoxam, and thiamethoxam with some inactivation of nitenpyram and nithiazine, and little or no effect on four other compounds.
Serine hydrolase KIAA1363 is highly expressed in invasive cancer cells and is the major protein in mouse brain diethylphosphorylated by and hydrolyzing low levels of chlorpyrifos oxon (CPO) (the activated metabolite of a major insecticide). It is also the primary CPO-hydrolyzing enzyme in spinal cord, kidney, heart, lung, testis, and muscle but not liver, a pattern of tissue expression confirmed by fluorophosphonate-rhodamine labeling. KIAA1363 gene deletion using homologous recombination reduces CPO binding, hydrolysis, and metabolism 3-29-fold on incubation with brain membranes and homogenates determined with 1 nM [(3)H-ethyl]CPO and the inhibitory potency for residual CPO with butyrylcholinesterase as a biomarker. Studies with knockout mice further show that KIAA1363 partially protects brain AChE and monoacylglycerol lipase from CPO-induced in vivo inhibition. Surprisingly, mouse brain KIAA1363 and AChE are similar in in vitro sensitivity to seven methyl, ethyl, and propyl but not higher alkyl OP insecticides and analogues, prompting structural comparisons of the active sites of KIAA1363 and AChE relative to OP potency and selectivity. Homology modeling based largely on the Archaeoglobus fulgidus esterase crystal structure indicates that KIAA1363 has a catalytic triad of S191, D348, and H378, a GDSAG motif, and an oxyanion hole of H113, G114, G115, and G116. Excellent selectivity for KIAA1363 is achieved on OP structure optimization with long alkyl chain substituents suggesting that KIAA1363 has larger acyl and leaving group pockets than those of AChE. KIAA1363 reactivates faster than AChE presumably due to differences in the uncoupling of the catalytic triad His upon phosphorylation. The structural modeling of KIAA1363 helps us understand OP structure-activity relationships and the toxicological relevance of this detoxifying enzyme.
        
Title: Monoacylglycerol lipase inhibition by organophosphorus compounds leads to elevation of brain 2-arachidonoylglycerol and the associated hypomotility in mice Quistad GB, Klintenberg R, Caboni P, Liang SN, Casida JE Ref: Toxicol Appl Pharmacol, 211:78, 2006 : PubMed
Three components of the cannabinoid system are sensitive to selected organophosphorus (OP) compounds: monoacylglycerol (MAG) lipase that hydrolyzes the major endogenous agonist 2-arachidonoylglycerol (2-AG); fatty acid amide hydrolase (FAAH) that cleaves the agonist anandamide present in smaller amounts; the CB1 receptor itself. This investigation considers which component of the cannabinoid system is the most likely contributor to OP-induced hypomotility in mice. Structure-activity studies by our laboratory and others rule against major involvement of a direct toxicant-CB1 receptor interaction for selected OPs. Attention was therefore focused on the OP sensitivities of MAG lipase and FAAH, assaying 19 structurally diverse OP chemicals (pesticides, their metabolites and designer compounds) for in vitro inhibition of both enzymes. Remarkably high potency and low selectivity is observed with three O-alkyl (C1, C2, C3) alkylphosphonofluoridates (C8, C12) (IC50 0.60-3.0 nM), five S-alkyl (C5, C7, C9) and alkyl (C10, C12) benzodioxaphosphorin oxides (IC50 0.15-5.7 nM) and one OP insecticide metabolite (chlorpyrifos oxon, IC50 34-40 nM). In ip-treated mice, the OPs at 1-30 mg/kg more potently inhibit brain FAAH than MAG lipase, but FAAH inhibition is not correlated with hypomotility. However, the alkylphosphonofluoridate-treated mice show dose-dependent increases in severity of hypomotility, inhibition of MAG lipase activity and elevation of 2-AG. Moderate to severe hypomotility is accompanied by 64 to 86% MAG lipase inhibition and about 6-fold elevation of brain 2-AG level. It therefore appears that OP-induced MAG lipase inhibition leads to elevated 2-AG and the associated hypomotility.
Lipases sensitive to organophosphorus (OP) inhibitors play critical roles in cell regulation, nutrition, and disease, but little is known on the toxicological aspects in mammals. To help fill this gap, six lipases or lipase-like proteins are assayed for OP sensitivity in vitro under standard conditions (25 degrees C, 15 min incubation). Postheparin serum lipase, lipoprotein lipase (LPL) (two sources), pancreatic lipase, monoacylglycerol (MAG) lipase, cholesterol esterase, and KIAA1363 are considered with 32 OP pesticides and related compounds. Postheparin lipolytic activity in rat serum is inhibited by 14 OPs, including chlorpyrifos oxon (IC50 50-97 nM). LPL (bovine milk and Pseudomonas) generally is less inhibited by the insecticides or activated oxons, but the milk enzyme is very sensitive to six fluorophosphonates and benzodioxaphosphorin oxides (IC50 7-20 nM). Porcine pancreatic lipase is very sensitive to dioctyl 4-nitrophenyl phosphate (IC50 8 nM), MAG lipase of mouse brain to O-4-nitrophenyl methyldodecylphosphinate (IC50 0.6 nM), and cholesterol esterase (bovine pancreas) to all of the classes of OPs tested (IC50 < 10 nM for 17 compounds). KIAA1363 is sensitive to numerous OPs, including two O-4-nitrophenyl compounds (IC50 3-4 nM). In an overview, inhibition of 28 serine hydrolases (including lipases) by eight OPs (chlorpyrifos oxon, diazoxon, paraoxon, dichlorvos, and four nonpesticides) showed that brain acetylcholinesterase is usually less sensitive than butyrylcholinesterase, liver esterase, cholesterol esterase, and KIAA1363. In general, each lipase (like each serine hydrolase) has a different spectrum of OP sensitivity, and individual OPs have unique ranking of potency for inhibition of serine hydrolases.
        
Title: Serine hydrolase targets of organophosphorus toxicants Casida JE, Quistad GB Ref: Chemico-Biological Interactions, 157-158:277, 2005 : PubMed
Acetylcholinesterase (AChE) is one of several hundred serine hydrolases in people potentially exposed to about 80 organophosphorus (OP) compounds important as insecticides or chemical warfare agents. The toxicology of OPs was interpreted until recently almost solely on the basis of AChE inhibition. It is assumed that each serine hydrolase has a specific function and proposed that every OP compound has a unique inhibitory profile. This review considers the progress in sifting the expanding list of potential serine hydrolase toxicological targets. About 50 serine hydrolase targets have been recognized but only a few studied thoroughly. The toxicological relevance of known secondary OP targets is established mainly from observations with humans (butyrylcholinesterase and neuropathy target esterase-lysophospholipase) and studies with mice (cannabinoid CB1 receptor, carboxylesterase, lysophospholipase and platelet activating factor acetylhydrolase) and hen eggs (arylformamidase or kynurenine formamidase). Pesticides most commonly shown to inhibit these targets in experimental vertebrates are chlorpyrifos and tribufos. Generally the levels of environmental and occupational OP pesticide exposure are well below those causing in vivo inhibition of secondary serine hydrolase targets. Although exposure to OP insecticides is decreasing from stricter regulations and the development of resistant pest strains, it will continue to some degree for decades in the future. Only two OPs are used as pharmaceuticals, i.e. echothiophate as an ophthalmic for treatment of glaucoma and metrifonate as an anthelmintic for Schistosoma (and formerly as a candidate drug for improved cognitive function in Alzheimer's disease). In safety evaluations, knowledge on known OP targets must be balanced against major gaps in current understanding since more than 75% of the serine hydrolases are essentially unknown as to OP targeting and relevance, i.e. it is not clear if they play a role in OP toxicology.
        
Title: Identification of aldehyde oxidase as the neonicotinoid nitroreductase Dick RA, Kanne DB, Casida JE Ref: Chemical Research in Toxicology, 18:317, 2005 : PubMed
Imidacloprid (IMI), the prototypical neonicotinoid insecticide, is used worldwide for crop protection and flea control on pets. It is both oxidatively metabolized by cytochrome P450 enzymes and reduced at the nitroguanidine moiety by a previously unidentified cytosolic "neonicotinoid nitroreductase", the subject of this investigation. Two major metabolites are detected on incubation of IMI with rabbit liver cytosol: the nitrosoguanidine (IMI-NO) and the aminoguanidine (IMI-NH2). Three lines of evidence identify the molybdo-flavoenzyme aldehyde oxidase (AOX, EC 1.2.3.1) as the neonicotinoid nitroreductase. First, classical AOX electron donor substrates (benzaldehyde, 2-hydroxypyrimidine, and N-methylnicotinamide) dramatically increase the rate of formation of IMI metabolites. Allopurinol and diquat are also effective electron donors, while NADPH and xanthine are not. Second, AOX inhibitors (potassium cyanide, menadione, and promethazine) inhibit metabolite formation when N-methylnicotinamide is utilized as an electron donor. Without the addition of an electron donor, rabbit liver cytosol reduces IMI only to IMI-NO at a slow rate. This reduction is also inhibited by potassium cyanide, menadione, and promethazine, as well as by additional AOX inhibitors, cimetidine and chlorpromazine. Finally, IMI nitroreduction by AOX is sensitive to an aerobic atmosphere, but to a much lesser extent than cytochrome P450 2D6. Large species differences are observed in the IMI nitroreductive activity of liver cytosol. While rabbit and monkey (Cynomolgus) give the highest levels of total metabolite formation, human, mouse, cow, and rat also metabolize IMI rapidly. In contrast, dog, cat, and chicken liver cytosols do not reduce IMI at appreciable rates. AOX, as a neonicotinoid nitroreductase, may limit the persistence of IMI, and possibly other neonicotinoids, in mammals.
The gene coding for arylformamidase (Afmid, also known as kynurenine formamidase) was inactivated in mice through the removal of a shared bidirectional promoter region regulating expression of the Afmid and thymidine kinase (Tk) genes. Afmid/Tk -deficient mice are known to develop sclerosis of glomeruli and to have an abnormal immune system. Afmid-catalyzed hydrolysis of N-formyl-kynurenine is a key step in tryptophan metabolism and biosynthesis of kynurenine-derived products including kynurenic acid, quinolinic acid, nicotinamide, NAD, and NADP. A disruption of these pathways is implicated in neurotoxicity and immunotoxicity. In wild-type (WT) mice, Afmid-specific activity (as measured by formyl-kynurenine hydrolysis) was 2-fold higher in the liver than in the kidney. Formyl-kynurenine hydrolysis was reduced by approximately 50% in mice heterozygous (HZ) for Afmid/Tk and almost completely eliminated in Afmid/Tk knockout (KO) mice. However, there was 13% residual formyl-kynurenine hydrolysis in the kidney of KO mice, suggesting the existence of a formamidase other than Afmid. Liver and kidney levels of nicotinamide plus NAD/NADP remained the same in WT, HZ and KO mice. Plasma concentrations of formyl-kynurenine, kynurenine, and kynurenic acid were elevated in KO mice (but not HZ mice) relative to WT mice, further suggesting that there must be enzymes other than Afmid (possibly in the kidney) capable of metabolizing formyl-kynurenine into kynurenine. Gradual kidney deterioration and subsequent failure in KO mice is consistent with high levels of tissue-specific Afmid expression in the kidney of WT but not KO mice. On this basis, the most significant function of the kynurenine pathway and Afmid in mice may be in eliminating toxic metabolites and to a lesser extent in providing intermediates for other processes.
        
Title: Neonicotinoid nitroguanidine insecticide metabolites: synthesis and nicotinic receptor potency of guanidines, aminoguanidines, and their derivatives Kanne DB, Dick RA, Tomizawa M, Casida JE Ref: Chemical Research in Toxicology, 18:1479, 2005 : PubMed
Four neonicotinoid nitroguanidine insecticides (imidacloprid, thiamethoxam, clothianidin, and dinotefuran) acting as nicotinic agonists account for 10-15% of worldwide insecticide sales. General methods are needed for synthesis of their guanidine and aminoguanidine metabolites so they may be used as analytical standards and for evaluation of nicotinic receptor potency. The guanidines are obtained by treating the parent nitroguanidines with Fe powder in aqueous C2H5OH containing NH4Cl and isolated by silica chromatography. The aminoguanidines are prepared as mixtures with the guanidines on reaction of the parent nitroguanidines and Zn powder in glacial acetic acid. The imidacloprid aminoguanidine is isolated as the acetone imine or trifluoroacetamide and the clothianidin and dinotefuran aminoguanidines as the acetone imines using silica chromatography. Deprotection under acidic conditions then leads to the aminoguanidine.HCl salts. Because of stability considerations, a pH partitioning method is used to separate thiamethoxam aminoguanidine and guanidine. An alternate procedure to the aminoguanidine of imidacloprid (but not thiamethoxam, clothianidin, or dinotefuran) is reaction with hydrazine hydrate and NH4Cl in anhydrous C2H5OH. Ambiguities in further biological reactions are clarified by synthesizing authentic standards of three purported metabolites formed via the imidacloprid aminoguanidine: the 1,2,4-triazol-3-one derivative with ethyl chloroformate or ethyl pyrocarbonate, the acetaldehyde imine with acetaldehyde, and the 3-methyl-1,2,4-triazin-4-one derivative with ethyl pyruvate in refluxing toluene. The purported triazolone metabolite is reassigned as the aminoguanidine acetaldehyde imine probably formed as an artifact from acetaldehyde present in the ethyl acetate used for metabolite extraction. Potency at the Drosophila nicotinic receptor is greatly decreased on converting a nitroguanidine to a guanidine or aminoguanidine. In sharp contrast, potency at the vertebrate alpha4beta2 nicotinic receptor is generally increased on conversion from the nitroguanidine to aminoguanidine and particularly guanidine derivatives.
        
Title: 6'-Methylpyrido[3,4-b]norhomotropane: synthesis and outstanding potency in relation to the alpha4beta2 nicotinic receptor pharmacophore model Kanne DB, Tomizawa M, Durkin KA, Casida JE Ref: Bioorganic & Medicinal Chemistry Lett, 15:877, 2005 : PubMed
6'-Methylpyrido[3,4-b]norhomotropane [synthesis as the racemate reported here] is more potent at the alpha4beta2 nicotinic receptor than any previous bridged nicotinoid. The two nitrogens and 6'-methyl substituent are superimposable on the two nitrogens and 6-chloro substituent of epibatidine, with the best fit on comparing the chair conformer of the (1R)-pyridonorhomotropane with natural (1R)-epibatidine. In this pharmacophore model, the 6'-methyl substituent may be equivalent to the acetyl methyl of acetylcholine.
Organophosphorus (OP) insecticides and chemical warfare agents act primarily by inhibiting acetylcholinesterase. There are many secondary targets for OP toxicants as observed for example with the major insecticide chlorpyrifos and its bioactivated metabolite chlorpyrifos oxon (CPO). Therefore, it was surprising that the predominant mouse brain protein labeled in vitro by [(3)H-ethyl]CPO (1 nM) (designated CPO-binding protein or CPO-BP) is not one of these known OP toxicant targets. CPO-BP is a 50-kDa membrane-bound serine hydrolase measured by derivatization with [(3)H]CPO and SDS/PAGE or filtration binding assay. It appears to undergo rapid diethylphosphorylation by [(3)H]CPO followed by either dephosphorylation and reactivation or aging on loss of an ethyl group. CPO and several other OP toxicants potently inhibit CPO-BP in vivo (i.p., 2 h) (50% inhibition at 2-25 mg/kg) and in vitro (50% inhibition at 8-68 nM). Using three chemical labeling reagents, i.e., [(3)H]CPO and the activity-based proteomic probes fluorophosphonate-biotin and fluorophosphonate-rhodamine, mouse brain CPO-BP is identified as serine hydrolase KIAA1363 of unknown function. Brains from KIAA1363(-/-) mice show greatly reduced levels of CPO labeling and hydrolytic metabolism compared to brains from wild-type mice. KIAA1363 therefore is the principal enzyme for metabolizing low levels of CPO in brain and may play a more general role in detoxification of OP nerve poisons.
        
Title: Cloning, expression, and catalytic triad of recombinant arylformamidase Pabarcus MK, Casida JE Ref: Protein Expr Purif, 44:39, 2005 : PubMed
Arylformamidase (AFMID) is the second enzyme of the kynurenine pathway metabolizing tryptophan to nicotinic acid and nicotinamide adenine dinucleotide cofactors. Inhibition of AFMID by organophosphorus insecticides in developing chicken embryos is correlated with lowered NAD levels and severe teratogenesis. The cDNA sequence previously identified for mouse liver AFMID (AF399717) (MW 34229) was cloned and expressed in Escherichia coli. Residues identified as potential catalytic triad members (S162, D247, and H279) through sequence motif and homology modeling were mutated to alanine to probe their contributions to enzyme activity. The wild-type and mutant AFMIDs were expressed as amino terminal 6 x His-tagged recombinant proteins to facilitate purification. Three chromatography steps isolated highly purified proteins for enzyme activity comparisons. Expressed AFMID showed high activity, 42+/-1 micromol/min/mg protein, for its natural substrate, N-formyl-l-kynurenine. The same K(m) (0.18--0.19 mM) was observed for expressed and native cytosolic AFMID. The single mutants (S162A, D247A, and H279A) lost essentially all (>99%) activity. The predicted catalytic triad of S162, D247, and H279 is therefore confirmed by site-directed mutagenesis.
Platelet-activating factor (PAF) is a potent endogenous phospholipid modulator of diverse biological activities, including inflammation and shock. PAF levels are primarily regulated by PAF acetylhydrolases (PAF-AHs). These enzymes are candidate secondary targets of organophosphorus (OP) pesticides and related toxicants. Previously known OP inhibitors of other serine hydrolases were tested with PAF-AH from mouse brain and testes of established functional importance compared with the structurally different human plasma enzyme. Several key OP pesticides and their oxon metabolites were very poor inhibitors of mouse brain and human plasma PAF-AH in vitro but moderately active for mouse brain and blood PAF-AH in vivo (e.g., tribufos defoliant and profenofos insecticide, presumably following oxidative bioactivation). OP compounds were then designed for maximum in vitro potency and selectivity for mouse brain PAF-AH vs. acetylcholinesterase (AChE). Lead compounds were found in a series of benzodioxaphosphorin 2-oxides. Ultrahigh potency and selectivity were achieved with n-alkyl methylphosphonofluoridates (long-chain sarin analogs): mouse brain and testes IC50 < or = 5 nM for C(8)-C(18) analogs and 0.1-0.6 nM for C(13) and C(14) compounds; human plasma IC50 < or = 2 nM for C(13)-C(18) analogs. AChE inhibitory potency decreased as chain length increased with maximum brain PAF-AH/AChE selectivity (>3000-fold) for C(13)-C(18) compounds. The toxicity of i.p.-administered PAF (LD50 ca. 0.5 mg/kg) was increased less than 2-fold by pretreatment with tribufos or the C(13)n-alkyl methylphosphonofluoridate. These studies with a mouse model indicate that PAF-AH is not a major secondary target of OP pesticide poisoning. The optimized PAF-AH inhibitors may facilitate investigations on other aspects of PAF metabolism and action.
        
Title: Blood acylpeptide hydrolase activity is a sensitive marker for exposure to some organophosphate toxicants Quistad GB, Klintenberg R, Casida JE Ref: Toxicol Sci, 86:291, 2005 : PubMed
Acylpeptide hydrolase (APH) unblocks N-acetyl peptides. It is a major serine hydrolase in rat blood, brain, and liver detected by derivatization with (3)H-diisopropyl fluorophosphate (DFP) or a biotinylated fluorophosphonate. Although APH does not appear to be a primary target of acute poisoning by organophosphorus (OP) compounds, the inhibitor specificity of this secondary target is largely unknown. This study fills the gap and emphasizes blood APH as a potential marker of OP exposure. The most potent in vitro inhibitors for human erythrocyte and mouse brain APH are DFP (IC(50) 11-17 nM), chlorpyrifos oxon (IC(50) 21-71 nM), dichlorvos (IC(50) 230-560 nM), naled (IC(50) 370-870 nM), and their analogs with modified alkyl substituents. (3)H-diisopropyl fluorophosphate is a potent inhibitor of mouse blood and brain APH in vivo (ED(50) 0.09-0.2 mg/kg and 0.02-0.03 mg/l for ip and vapor exposure, respectively). Mouse blood and brain APH and blood butyrylcholinesterase (BChE) are of similar sensitivity to DFP in vitro and in vivo (ip and vapor exposure), but APH inhibition is much more persistent in vivo (still >80% inhibition after 4 days). The inhibitory potency of OP pesticides in vivo in mice varies from APH selective (dichlorvos, naled, and trichlorfon), to APH and BChE selective (profenofos and tribufos), to ChE selective or nonselective (many commercial insecticides). Sarin administered ip at a lethal dose to guinea pigs inhibits blood acetylcholinesterase and BChE completely but erythrocyte APH only partially. Blood APH activity is therefore a sensitive marker for exposure to some but not all OP pesticides and chemical warfare agents.
        
Title: Pharmacological profiles of recombinant and native insect nicotinic acetylcholine receptors Tomizawa M, Millar NS, Casida JE Ref: Insect Biochemistry & Molecular Biology, 35:1347, 2005 : PubMed
Nicotinic acetylcholine receptors (nAChRs) are targets for insect-selective neonicotinoid insecticides exemplified by imidacloprid (IMI) and mammalian-selective nicotinoids including nicotine and epibatidine (EPI). Despite their importance, insect nAChRs are poorly understood compared with their vertebrate counterparts. This study characterizes the [(3)H]IMI, [(3)H]EPI, and [(3)H]alpha-bungarotoxin (alpha-BGT) binding sites in hybrid nAChRs consisting of Drosophila melanogaster (fruit fly) or Myzus persicae (peach-potato aphid) alpha2 coassembled with rat beta2 subunits (Dalpha2/Rbeta2 and Mpalpha2/Rbeta2) and compares them with native insect and vertebrate alpha4beta2nAChRs. [(3)H]IMI and [(3)H]EPI bind to Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 hybrids but [(3)H]alpha-BGT does not. In native Drosophila receptors, [(3)H]EPI has a single high-affinity binding site that is independent from that for [(3)H]IMI and, interestingly, overlaps the [(3)H]alpha-BGT site. In the Mpalpha2/Rbeta2 hybrid, [(3)H]IMI and [(3)H]EPI bind to the same site and have similar pharmacological profiles. On considering both neonicotinoids and nicotinoids, the Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 receptors display intermediate pharmacological profiles between those of native insect and vertebrate alpha4beta2 receptors, limiting the use of these hybrid receptors for predictive toxicology. These findings are consistent with the agonist binding site being located at the nAChR subunit interface and indicate that both alpha and beta subunits influence the pharmacological properties of insect nAChRs.
        
Title: Neonicotinoid insecticide toxicology: mechanisms of selective action Tomizawa M, Casida JE Ref: Annual Review of Pharmacology & Toxicology, 45:247, 2005 : PubMed
The neonicotinoids, the newest major class of insecticides, have outstanding potency and systemic action for crop protection against piercing-sucking pests, and they are highly effective for flea control on cats and dogs. Their common names are acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, and thiamethoxam. They generally have low toxicity to mammals (acute and chronic), birds, and fish. Biotransformations involve some activation reactions but largely detoxification mechanisms. In contrast to nicotine, epibatidine, and other ammonium or iminium nicotinoids, which are mostly protonated at physiological pH, the neonicotinoids are not protonated and have an electronegative nitro or cyano pharmacophore. Agonist recognition by the nicotinic receptor involves cation-pi interaction for nicotinoids in mammals and possibly a cationic subsite for interaction with the nitro or cyano substituent of neonicotinoids in insects. The low affinity of neonicotinoids for vertebrate relative to insect nicotinic receptors is a major factor in their favorable toxicological profile.
Rotenone and deguelin are the major active ingredients and principal components of cuberesin from Lonchocarpus utilis used as a botanical insecticide and piscicide. They are also potent complex I (NADH:ubiquinone oxidoreductase) inhibitors. Rotenone was known earlier, and deguelin is shown here to induce a Parkinson's disease (PD)-like syndrome after subcutaneous treatment of rats by osmotic minipump. Rotenone at 3 mg/kg/day or deguelin at 6 but not 3 mg/kg/day induces degeneration of the nigrostriatal dopaminergic pathway, as shown by reduced tyrosine hydroxylase immunoreactivity with treatments for 5 or 6 days. The neuropathological lesions are associated with a brain level of parent rotenoid of 0.4-1.3 ppm but not with the much smaller brain level of 12abeta-hydroxyrotenoids or other metabolites analyzed by HPLC and LC/MS. We previously established that the hydroxylated metabolites and derivatives of rotenone and deguelin are all less active (i.e., detoxified) as complex I inhibitors relative to the parent rotenoids. The PD-like syndrome induced in rats by rotenone and deguelin is therefore due to the parent compounds rather than metabolites. Deguelin is about half as active as rotenone in inducing the PD-like syndrome in rats and in acute ip LD50 in mice. Rotenone and deguelin are metabolized by human recombinant 3A4 and 2C19 but not five other P450 enzymes. 2C19 is more selective than 3A4 in forming the 12abeta-hydroxyrotenoids. Identified sites of metabolic attack individually or in combination are as follows: 12abeta hydroxylation and 2-O-demethylation of both compounds, oxidation of the rotenone isopropenyl substituent to mono and diol derivatives, and probable oxidation of the deguelin dimethylchromene double bond. These toxicological features must be considered in using rotenone, deguelin, and their analogues as pesticides, candidate radioimaging and cancer chemopreventive agents, and models of PD.
        
Title: Why Insecticides Are More Toxic to Insects than People: The Unique Toxicology of Insects Casida JE, Quistad GB Ref: Journal of Pesticide Science, 29:81, 2004 : PubMed
The unique toxicology of insects provides the safety mechanisms for the major insecticides. The selectivity of insecticidal nerve poisons is attributable to structural differences in binding subsites (acetylcholinesterase and nicotinic receptor) or receptor subunit interfaces (gamma-aminobutyric acid receptor) or transmembrane regions (voltage-sensitive sodium channel) supplemented by metabolic activation and detoxification. Slow action limits the use of the remarkably selective insecticides acting at juvenile hormone and ecdysone receptors and inhibiting chitin biosynthesis. The delta-endotoxin of Bacillus thuringiensis induces midgut lysis and death in insects by a mechanism not applicable in mammals. Future pest management will rely on continuing advances in insect toxicology.
        
Title: Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets Casida JE, Quistad GB Ref: Chemical Research in Toxicology, 17:983, 2004 : PubMed
Lysophospholipases (LysoPLAs) are a large family of enzymes for removing lysophospholipids from cell membranes. Potent inhibitors are needed to define the importance of LysoPLAs as targets for toxicants and potential therapeutics. This study considers organophosphorus (OP) inhibitors with emphasis on mouse brain total LysoPLA activity relative to the mipafox-sensitive neuropathy target esterase (NTE)-LysoPLA recently established as 17% of the total activity and important in the action of OP delayed toxicants. The most potent inhibitors of total LysoPLA in mouse brain are isopropyl dodecylphosphonofluoridate (also for LysoPLA of Vibrio bacteria), ethyl octylphosphonofluoridate (EOPF), and two alkyl-benzodioxaphosphorin 2-oxides (BDPOs)[(S)-octyl and dodecyl] (IC50 2-8 nM). OP inhibitors acting in vitro and in vivo differentiate a more sensitive portion but not a distinct NTE-LysoPLA compared with total LysoPLA activity. For 10 active inhibitors, NTE-LysoPLA is 17-fold more sensitive than total LysoPLA, but structure-activity comparisons give a good correlation (r(2) = 0.94) of IC50 values, suggesting active site structural similarity or identity. In mice 4 h after intraperitoneal treatment with discriminating doses, EOPF, tribufos (a plant defoliant), and dodecanesulfonyl fluoride inhibit 41-57% of the total brain LysoPLA and 85-99% of the NTE-LysoPLA activity. Total LysoPLA as well as NTE-LysoPLA is decreased in activity in Nte(+/-)-haploinsufficient mice compared to their Nte(+/+) littermates. The lysolecithin level of spinal cord but not brain is elevated significantly following EOPF treatment (3 mg/kg), thereby focusing attention on localized rather than general alterations in lysophospholipid metabolism in OP-induced hyperactivity and toxicity.
        
Title: Alpha-nitro ketone as an electrophile and nucleophile: synthesis of 3-substituted 2-nitromethylenetetrahydrothiophene and -tetrahydrofuran as drosophila nicotinic receptor probes Zhang N, Tomizawa M, Casida JE Ref: J Org Chem, 69:876, 2004 : PubMed
3-(6-Chloropyridin-3-yl)methyl-2-nitromethylenetetrahydrothiophene 2 and -tetrahydrofuran 3 were synthesized through novel approaches using alpha-nitro ketone intermediates as an electrophile and nucleophile, respectively. The 2-nitromethylenetetrahydrothiophene 2 was formed exclusively as the Z-isomer through intramolecular attack by a thiol substituent at the carbonyl group of an alpha-nitro ketone, in which the alpha-nitro ketone served as an electrophile. In contrast, the corresponding 2-nitromethylenetetrahydrofuran 3, not accessible by the above route due to limited stability, was prepared as a mixture of E- and Z-isomers by intramolecular attack of the alpha-nitro ketone enol anion in which the deprotonated alpha-nitro ketone served as a nucleophile. These compounds, together with the corresponding 2-nitromethylenepyrrolidine (1), were used to probe the Drosophila neonicotinoid-nicotinic acetylcholine receptor interaction.
        
Title: Drosophila nicotinic receptors: evidence for imidacloprid insecticide and alpha-bungarotoxin binding to distinct sites Zhang N, Tomizawa M, Casida JE Ref: Neuroscience Letters, 371:56, 2004 : PubMed
The principal mammalian brain nicotinic acetylcholine receptors (nAChRs) are the alpha-bungarotoxin (alpha-BGT)-insensitive alpha 4 beta 2 and the alpha-BGT-sensitive alpha 7 subtypes assayed with radiolabeled nicotinoids and alpha-BGT, respectively. Drosophila head membranes bind the insecticide radioligand [(3)H]imidacloprid ([(3)H]IMI) and [(3)H]alpha-BGT with K(D) 5.7 and 2.7 nM and B(max) 980 and 1400 fmol/mg protein, respectively. The hypothesis that [(3)H]IMI at 2.5 or 20 nM and [(3)H]alpha-BGT at 1 or 10 nM bind to distinct sites or subtypes is tested by using these radioligands alone and together in simultaneous dual binding experiments. These studies show no interference by one radioligand in the binding of the other one, i.e., independent binding, and that both unlabeled IMI and alpha-BGT give biphasic displacement curves. The pharmacological profiles of [(3)H]IMI and [(3)H]alpha-BGT suggest distinct binding sites for the two radioligands. These findings are consistent with those obtained with hybrid receptors assembled from Drosophila alpha subunits and a vertebrate beta subunit and with immunological and protein biochemical approaches. This study, therefore, provides direct evidence for distinct IMI- and alpha-BGT-sensitive sites or subtypes in Drosophila brain.
        
Title: Nereistoxin and cartap neurotoxicity attributable to direct block of the insect nicotinic receptor/channel Lee SJ, Tomizawa M, Casida JE Ref: Journal of Agricultural and Food Chemistry, 51:2646, 2003 : PubMed
Nereistoxin (NTX) (4-dimethylamino-1,2-dithiolane) is the naturally occurring prototype for cartap [the bis(thiocarbamate) derivative of the NTX dithiol], which is generally regarded as a proinsecticide reverting to NTX. The aim of this study is to define the target site(s) for dithiolanes and dithiol esters. The affinity of [(3)H]NTX was not suitable for binding assays with honeybee (Apis mellifera) head membranes. However, NTX and cartap are equally potent, direct-acting, and competitive displacers of [(3)H]thienylcyclohexylpiperidine binding at the noncompetitive blocker (NCB) site of the Apis nicotinic acetylcholine receptor (nAChR)/channel. NTX also binds at the Apis [(3)H]imidacloprid agonist site, but cartap does not. As candidate metabolic pathways, sequential N-desmethylation and S-oxidation of NTX progressively reduce its potency at the NCB site and toxicity to houseflies. A P450 inhibitor reduces the toxicity of NTX and enhances it with cartap. Surprisingly, cartap is not just a pro-NTX but instead directly induces inhibitory neurotoxicity by blocking the nAChR/channel, whereas NTX may have dual NCB and agonist targets.
Neuropathy target esterase (NTE) is inhibited by several organophosphorus (OP) pesticides, chemical warfare agents, lubricants, and plasticizers, leading to OP-induced delayed neuropathy in people (>30,000 cases of human paralysis) and hens (the best animal model for this demyelinating disease). The active site region of NTE as a recombinant protein preferentially hydrolyzes lysolecithin, suggesting that this enzyme may be a type of lysophospholipase (LysoPLA) with lysolecithin as its physiological substrate. This hypothesis is tested here in mouse brain by replacing the phenyl valerate substrate of the standard NTE assay with lysolecithin for an "NTE-LysoPLA" assay with four important findings. First, NTE-LysoPLA activity, as the NTE activity, is 41-45% lower in Nte-haploinsufficient transgenic mice than in their wild-type littermates. Second, the potency of six delayed neurotoxicants or toxicants as in vitro inhibitors varies from IC50 0.02 to 13,000 nM and is essentially the same for NTE-LysoPLA and NTE (r2 = 0.98). Third, the same six delayed toxicants administered i.p. to mice at multiple doses inhibit brain NTE-LysoPLA and NTE to the same extent (r2 = 0.90). Finally, their in vivo inhibition of brain NTE-LysoPLA generally correlates with delayed toxicity. Therefore, OP-induced delayed toxicity in mice, and possibly the hyperactivity associated with NTE deficiency, may be due to NTE-LysoPLA inhibition, leading to localized accumulation of lysolecithin, a known demyelinating agent and receptor-mediated signal transducer. This mouse model has some features in common with OP-induced delayed neuropathy in hens and people but differs in the neuropathological signs and apparently the requirement for NTE aging.
        
Title: Major intermediates in organophosphate synthesis (PCl3, POCl3, PSCl3, and their diethyl esters) are anticholinesterase agents directly or on activation Segall Y, Quistad GB, Sparks SE, Casida JE Ref: Chemical Research in Toxicology, 16:350, 2003 : PubMed
Three phosphotrichlorides [phosphorus trichloride (PCl(3)), phosphorus oxychloride (POCl(3)), and thiophosphoryl chloride (PSCl(3))] with an annual U.S. production of >500,000,000 pounds and their diethyl esters are intermediates in the production of organophosphorus pesticides, plastics, flame retardants, and hydraulic fluids. They are classified as highly toxic to mammals based on acute oral and inhalation data with rats. This study considers their mechanisms of toxicity. PCl(3) and POCl(3) inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) from several species with in vitro IC(50) values of 5-36 and 88-1200 microM, respectively; PSCl(3) is a less potent inhibitor. These phosphotrichlorides have high vapor toxicity to houseflies with in vivo inhibition of brain AChE activity correlating with mortality. PCl(3) and POCl(3) produce cholinergic poisoning signs on ip administration to mice, and all three phosphotrichlorides give marked in vivo inhibition of serum BChE but not brain AChE activity. PCl(3) is a direct acting AChE inhibitor. Our earlier proposed activation of POCl(3) is confirmed here by preparing pure Cl(2)P(O)OH and its potassium and dicyclohexylamine salts that reproduce the action of POCl(3) as in vitro AChE inhibitors and toxicants in mice. PSCl(3) on hydrolysis yields Cl(2)P(O)SH [which oxidizes with peracid to Cl(2)P(O)SOH] as the proposed activation product. Vapors of (EtO)(2)PCl, (EtO)(2)P(O)Cl, and (EtO)(2)P(S)Cl are lethal to houseflies as in vivo AChE inhibitors, the first two acting directly and the last one on oxidative activation to (EtO)(2)P(O)Cl (possibly by P450) or (EtO)(2)P(O)SCl (a phosphorylating agent in a peracid oxidation system). Thus PCl(3), (EtO)(2)PCl, and (EtO)(2)P(O)Cl act directly as AChE inhibitors whereas POCl(3) and PSCl(3) undergo hydrolytic activation and (EtO)(2)P(S)Cl undergoes oxidative activation. In contrast, the toxicity to mice of phosphofluorides [FP(O)Cl(2), F(Cl)P(O)OH, and F(2)P(O)OH; studied as model compounds for comparison] may be due to liberating fluoride ion.
        
Title: Arachidonylsulfonyl derivatives as cannabinoid CB1 receptor and fatty acid amide hydrolase inhibitors Segall Y, Quistad GB, Nomura DK, Casida JE Ref: Bioorganic & Medicinal Chemistry Lett, 13:3301, 2003 : PubMed
Arachidonylsulfonyl fluoride (3), reported here for the first time, is similar in potency to its known methyl arachidonylfluorophosphonate (2) analogue as an inhibitor of mouse brain fatty acid amide hydrolase activity (IC(50) 0.1 nM) and cannabinoid CB1 agonist [3H]CP 55,940 binding (IC(50) 304-530 nM). Interestingly, 3 is much more selective than 2 as an inhibitor for fatty acid amide hydrolase relative to acetylcholinesterase, butyrylcholinesterase and neuropathy target esterase. N-(2-Hydroxyethyl)arachidonylsulfonamide (4) is at least 2500-fold less potent than N-(2-hydroxyethyl)arachidonamide (anandamide) (1) at the CB1 agonist site.
        
Title: Toxicological and structural features of organophosphorus and organosulfur cannabinoid CB1 receptor ligands Segall Y, Quistad GB, Sparks SE, Nomura DK, Casida JE Ref: Toxicol Sci, 76:131, 2003 : PubMed
Potent cannabinoid CB1 receptor ligands include anandamide [N-(2-hydroxyethyl)arachidonamide], Delta9-tetrahydrocannabinol, and 3H-CP 55,940 at the agonist site and selected organophosphorus esters (including some pesticides) and organosulfur compounds at a proposed closely coupled "nucleophilic" site. This study considers the toxicological and structural features of alkylfluorophosphonates, benzodioxaphosphorin oxides, alkanesulfonyl fluorides, and analogs acting at the nucleophilic site. Binding at the agonist site, using3H-CP 55,940 in assays with mouse brain membranes, is inhibited byO-isopropyl dodecylfluorophosphonate (compound 2), dodecanesulfonyl fluoride (compound 14) and dodecylbenzodioxaphosphorin oxide with IC50 values of 2-11 nM. Compounds 2 and 14 are also effectivein vivo, with 84% inhibition of mouse brain CB1 binding 4 h after intraperitoneal dosage at 30 mg/kg. Compound 14-inhibited CB1 in mouse brain requires about 3-4 days for recovery of 50% activity, suggesting covalent derivatization. Delayed toxicity (mortality in 0.3-5 days) from compounds 2, 14, and octanesulfonyl fluoride (18) is more closely associated with in vivo inhibition of brain neuropathy target esterase-lysophospholipase (NTE-LysoPLA) than with that of CB1 or acetylcholinesterase. NTE-LysoPLA inhibited by sulfonyl fluorides 14 and 18 cannot "age," a proposed requirement for NTE phosphorylated by organophosphorus-delayed neurotoxicants. Several octane- and dodecanesulfonamides with N-(2-hydroxyethyl) and other substituents based on anandamide give depressed mobility and recumbent posture in mice, but the effects do not correlate with potency for CB1 inhibition in vitro. Specific toxicological responses are not clearly associated with organophosphorus- or organosulfur-induced inhibition of the proposed CB1 nucleophilic site in mouse brain. On the other hand, the most potent CB1 inhibitors examined here are also NTE-LysoPLA inhibitors and cause delayed toxicity in mice.
        
Title: Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors Tomizawa M, Casida JE Ref: Annual Review of Entomology, 48:339, 2003 : PubMed
Neonicotinoids, the most important new class of synthetic insecticides of the past three decades, are used to control sucking insects both on plants and on companion animals. Imidacloprid (the principal example), nitenpyram, acetamiprid, thiacloprid, thiamethoxam, and others act as agonists at the insect nicotinic acetylcholine receptor (nAChR). The botanical insecticide nicotine acts at the same target without the neonicotinoid level of effectiveness or safety. Fundamental differences between the nAChRs of insects and mammals confer remarkable selectivity for the neonicotinoids. Whereas ionized nicotine binds at an anionic subsite in the mammalian nAChR, the negatively tipped ("magic" nitro or cyano) neonicotinoids interact with a proposed unique subsite consisting of cationic amino acid residue(s) in the insect nAChR. Knowledge reviewed here of the functional architecture and molecular aspects of the insect and mammalian nAChRs and their neonicotinoid-binding site lays the foundation for continued development and use of this new class of safe and effective insecticides.
        
Title: The neonicotinoid electronegative pharmacophore plays the crucial role in the high affinity and selectivity for the Drosophila nicotinic receptor: an anomaly for the nicotinoid cation--pi interaction model Tomizawa M, Zhang N, Durkin KA, Olmstead MM, Casida JE Ref: Biochemistry, 42:7819, 2003 : PubMed
Cation-pi interaction, a prominent feature in agonist recognition by neurotransmitter-gated ion channels, does not apply to the anomalous action of neonicotinoids at the insect nicotinic acetylcholine receptor (nAChR). Insect-selective neonicotinoids have an electronegative pharmacophore (tip) in place of the ammonium or iminium cation of the vertebrate-selective nicotinoids, suggesting topological divergence of the agonist-binding sites in insect and vertebrate nAChRs. This study defines the molecular and electronic basis for the potent and selective interaction of the neonicotinoid electronegative pharmacophore with a unique subsite of the Drosophila but not of the vertebrate alpha4beta2 nAChR. Target site potency and selectivity are retained when the usual neonicotinoid N-nitroimine (=NNO(2)) electronegative tip is replaced with N-nitrosoimine (=NNO) or N-(trifluoroacetyl)imine (=NCOCF(3)) in combination with an imidazolidine, imidazoline, thiazolidine, or thiazoline heterocycle. X-ray crystallography establishes coplanarity between the heterocyclic and imine planes, including the electronegative substituent in the trans configuration. The functional tip is the coplanar oxygen atom of the N-nitrosoimine or the equivalent oxygen of the N-nitroimine. Quantum mechanics in the gas and aqueous phases fully support the conserved coplanarity and projection of the strongly electronegative tip. Further, a bicyclic analogue with a nitro tip in the cis configuration but retaining coplanarity has a high potency, whereas the N-trifluoromethanesulfonylimine (=NSO(2)CF(3)) moiety lacking coplanarity confers very low activity. The coplanar system between the electronegative tip and guanidine-amidine moiety extends the conjugation and facilitates negative charge (delta(-)) flow toward the tip, thereby enhancing interaction with the proposed cationic subsite such as lysine or arginine in the Drosophila nAChR.
Neuropathy target esterase (NTE) is involved in neural development and is the target for neurodegeneration induced by selected organophosphorus pesticides and chemical warfare agents. We generated mice with disruptions in Nte, the gene encoding NTE. Nte(-/-) mice die after embryonic day 8, and Nte(+/-) mice have lower activity of Nte in the brain and higher mortality when exposed to the Nte-inhibiting compound ethyl octylphosphonofluoridate (EOPF) than do wild-type mice. Nte(+/-) and wild-type mice treated with 1 mg per kg of body weight of EOPF have elevated motor activity, showing that even minor reduction of Nte activity leads to hyperactivity. These studies show that genetic or chemical reduction of Nte activity results in a neurological phenotype of hyperactivity in mammals and indicate that EOPF toxicity occurs directly through inhibition of Nte without the requirement for Nte gain of function or aging.
Chlorpyrifos oxon CPO activates extracellular signal-regulated kinase ERK 44/42 in Chinese hamster ovary CHOK1 cells but the mechanism is not defined This study tests the hypothesis that diacylglycerol DAG is the secondary messenger responsible for CPO-induced ERK 44/42 activation It is known that DAG is sequentially hydrolyzed by DAG lipase and monoacylglycerol MAG lipase both of which are organophosphate sensitive Inhibition of these enzymes might therefore lead to the accumulation of DAG and MAG of which only DAG is a secondary messenger The experiments show that treatment of CHOK1 cells with CPO significantly inhibits DAG/MAG lipase activity and elevates cellular DAG levels Pretreatment of CHOK1 cells with CPO or a carbamate known to be a DAG lipase inhibitor followed by treatment with a cell-permeable DAG 1,2-dihexanoyl-sn-glycerol results in synergistic activation of ERK 44/42 CPO-potentiated DAG-induced ERK 44/42 activation is both time and concentration dependent This activation is blocked by inhibitors of protein kinase C and mitogen-activated protein kinase kinase suggesting that these enzymes are important in CPO/DAG cellular signaling Activation by a stable DAG analogue phorbol ester was not altered by CPO suggesting that DAG metabolism is the probable target for CPO-potentiated DAG-induced ERK 44/42 activation These observations support the hypothesis that CPO potentiates DAG signaling in CHOK1 cells by inhibiting a CPO-sensitive DAG lipase thereby providing a potential mechanism of toxicity not associated with acetylcholinesterase inhibition
        
Title: Specificity of ethephon as a butyrylcholinesterase inhibitor and phosphorylating agent Haux JE, Lockridge O, Casida JE Ref: Chemical Research in Toxicology, 15:1527, 2002 : PubMed
Butyrylcholinesterase (BChE) is inhibited by the plant growth regulator (2-chloroethyl)phosphonic acid (ethephon) as observed 25 years ago both in vitro and in vivo in rats and mice and more recently in subchronic studies at low doses with human subjects. The proposed mechanism is phosphorylation of the BChE active site at S198 by ethephon dianion. The present study tests this hypothesis directly using [(33)P]ethephon and recombinant BChE (rBChE) with single amino acid substitutions and further evaluates if BChE is the most sensitive esterase target in vitro and with mice in vivo. [(33)P]Ethephon labels purified rBChE but not enzymatically inactive diethylphosphoryl-rBChE (derivatized at S198 by preincubation with chlorpyrifos oxon) or several other esterases and proteins. Amino acid substitutions that greatly reduce rBChE sensitivity to ethephon are G117H and G117K in the oxyanion hole (which may interfere with hydrogen bonding between glycine-N-H and ethephon dianion) and A328F, A328W, and A328Y (perhaps by impeding access to the active site gorge). Other substitutions that do not affect sensitivity are D70N, D70K, D70G, and E197Q which are not directly involved in the catalytic triad. The effect of pH and buffer composition on inhibition supports the hypothesis that ethephon dianion is the actual phosphorylating agent without activation by divalent cations. Human plasma BChE in vitro and mouse plasma BChE in vitro and in vivo are more sensitive to ethephon than any other esterases detected by butyrylthiocholine or 1-naphthyl acetate hydrolysis in native-PAGE. All mouse liver esterases observed are less sensitive than plasma BChE to ethephon in vitro and in vivo. More than a dozen other esterases examined are 10-100-fold less sensitive than BChE to ethephon. Thus, BChE inhibition continues to be the most sensitive marker of ethephon exposure.
        
Title: Melatonin reduces phosphine-induced lipid and DNA oxidation in vitro and in vivo in rat brain Hsu CH, Chi BC, Casida JE Ref: J Pineal Res, 32:53, 2002 : PubMed
Phosphine (PH(3)), a widely used pesticide, was found in our recent study to induce oxidative damage in the brain, liver and lung of rats. We also observed that melatonin significantly blocked this action. The present study focused on brain and the magnitude and mechanism of protection of PH(3)-induced oxidative damage by melatonin in vitro and in vivo. PH(3) in whole brain homogenate (3 mg protein/mL Tris-HCl pH 7.4 buffer) induced increasing lipid peroxidation [as malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA)] dependent on concentration (0.25-2 mM) and time (30-150 min), reaching a maximum level of 2.9-fold at 90 min after PH(3) at 1 mM. Elevation of MDA + 4-HDA levels by PH(3) at 1 mM was also observed in homogenates of cerebral cortex, cerebellum, hippocampus and hypothalamus examined individually. Melatonin at 0.1-2 mM progressively inhibited PH(3)-induced lipid peroxidation in brain and regions thereof. Additionally, PH(3) induced brain DNA oxidation in vitro and in vivo determined as 8-hydroxyguanosine (8-OH-dG). Melatonin at 1 mM significantly suppressed PH(3)-induced brain DNA oxidation in vitro. PH(3) at 4 mg/kg i.p. significantly elevated 8-OH-dG in frontal cortex and melatonin prevented it. PH(3) in vivo marginally lowered brain glutathione peroxidase activity and melatonin restored it completely. In contrast, PH(3) and melatonin both stimulated superoxide dismutase production. Brain glutathione (GSH) levels in PH(3)-treated rats were significantly reduced at 30 min and recovered gradually. It is concluded that melatonin, probably because of its free radical scavenging ability, confers marked protection against PH(3)-induced oxidative toxicity in brain.
        
Title: Kynurenine formamidase: determination of primary structure and modeling-based prediction of tertiary structure and catalytic triad Pabarcus MK, Casida JE Ref: Biochimica & Biophysica Acta, 1596:201, 2002 : PubMed
Kynurenine formamidase (KFase) (EC 3.5.1.9) hydrolyzes N-formyl-L-kynurenine, an obligatory step in the conversion of tryptophan to nicotinic acid. Low KFase activity in chicken embryos, from inhibition by organophosphorus insecticides and their metabolites such as diazoxon, leads to marked developmental abnormalities. While KFase was purportedly isolated previously, the structure and residues important for catalysis and inhibition were not established. KFase was isolated here from mouse liver cytosol by (NH4)2SO4 precipitation and three FPLC steps (resulting in 221-fold increase in specific activity for N-formyl-L-kynurenine hydrolysis) followed by conversion to [3H]diethylphosphoryl-KFase and finally isolation by C4 reverse-phase high-performance liquid chromatography. Determination of tryptic fragment amino acid sequences and cDNA cloning produced a new 305-amino-acid protein sequence. Although an amidase by function, the primary structure of KFase lacks the amidase signature sequence and is more similar to esterases and lipases. Sequence profile analysis indicates KFase is related to the esterase/lipase/thioesterase family containing the conserved active-site serine sequence GXSXG. The alpha/beta-hydrolase fold is suggested for KFase by its primary sequence and predicted secondary conformation. A three-dimensional model based on the structures of homologous carboxylesterase EST2 and brefeldin A esterase implicates Ser162, Asp247 and His279 as the active site triad.
        
Title: Selective inhibitors of fatty acid amide hydrolase relative to neuropathy target esterase and acetylcholinesterase: toxicological implications Quistad GB, Sparks SE, Segall Y, Nomura DK, Casida JE Ref: Toxicol Appl Pharmacol, 179:57, 2002 : PubMed
Fatty acid amide hydrolase (FAAH) plays an important role in nerve function by regulating the action of endocannabinoids (e.g., anandamide) and hydrolyzing a sleep-inducing factor (oleamide). Several organophosphorus pesticides and related compounds are shown in this study to be more potent in vivo inhibitors of mouse brain FAAH than neuropathy target esterase (NTE), raising the question of the potential toxicological relevance of FAAH inhibition. These FAAH-selective compounds include tribufos and (R)-octylbenzodioxaphosphorin oxide with delayed neurotoxic effects in mice and hens plus several organophosphorus pesticides (e.g., fenthion) implicated as delayed neurotoxicants in humans. The search for a highly potent and selective inhibitor for FAAH relative to NTE for use as a toxicological probe culminated in the discovery that octylsulfonyl fluoride inhibits FAAH by 50% at 2 nM in vitro and 0.2 mg/kg in vivo and NTE is at least 100-fold less sensitive in each case. More generally, the studies revealed 12 selective in vitro inhibitors for FAAH (mostly octylsulfonyl and octylphosphonyl derivatives) and 9 for NTE (mostly benzodioxaphosphorin oxides and organophosphorus fluoridates). The overall in vivo findings with 16 compounds indicate the expected association of AChE inhibition with acute or cholinergic syndrome and >70% brain NTE inhibition with delayed neurotoxic action. Surprisingly, 75-99% brain FAAH inhibition does not lead to any overt neurotoxicity or change in behavior (other than potentiation of exogenous anandamide action). Thus, FAAH inhibition in mouse brain does not appear to be a primary target for organophosphorus pesticide-induced neurotoxic action (cholinergic or intermediate syndrome or delayed neurotoxicity).
Binding of the endocannabinoid anandamide or of Delta(9)-tetrahydrocannabinol to the agonist site of the cannabinoid receptor (CB1) is commonly assayed with [3H]CP 55,940. Potent long-chain alkylfluorophosphonate inhibitors of agonist binding suggest an additional, important and closely-coupled nucleophilic site, possibly undergoing phosphorylation. We find that the CB1 receptor is also sensitive to inhibition in vitro and in vivo by several organophosphorus pesticides and analogs. Binding of [3H]CP 55,940 to mouse brain CB1 receptor in vitro is inhibited 50% by chlorpyrifos oxon at 14 nM, chlorpyrifos methyl oxon at 64 nM and paraoxon, diazoxon and dichlorvos at 1200-4200 nM. Some 15 other organophosphorus pesticides and analogs are less active in vitro. The plant defoliant tribufos inhibits CB1 in vivo, without cholinergic poisoning signs, by 50% at 50 mg/kg intraperitoneally with a recovery half-time of 3-4 days, indicating covalent derivatization. [3H-ethyl]Chlorpyrifos oxon may be suitable for radiolabeling and characterization of this proposed nucleophilic site.
        
Title: Neonicotinoid insecticides: reduction and cleavage of imidacloprid nitroimine substituent by liver microsomal and cytosolic enzymes Schulz-Jander DA, Leimkuehler WM, Casida JE Ref: Chemical Research in Toxicology, 15:1158, 2002 : PubMed
The major insecticide imidacloprid (IMI) is known to be metabolized by human cytochrome P450 3A4 with NADPH by imidazolidine hydroxylation and dehydrogenation to give 5-hydroxy-imidacloprid and the olefin, respectively, and by nitroimine reduction and cleavage to yield the nitrosoimine, guanidine, and urea derivatives. More extensive metabolism by human or rabbit liver microsomes with NADPH or rabbit liver cytosol without added cofactor reduces the IMI N-nitro group to an N-amino substituent, i.e., the corresponding hydrazone. A major metabolite on incubation of IMI in the human microsome-NADPH system is tentatively assigned by LC/MS as a 1,2,4-triazol-3-one derived from the hydrazone; the same product is obtained on reaction of the hydrazone with ethyl chloroformate. The hydrazone and proposed triazolone are considered here together (referred to as the hydrazone) for quantitation. Only a portion of the microsomal reduction and cleavage of the nitroimine substituent is attributable to a CYP450 enzyme. The cytosolic enzyme conversion to the hydrazone is inhibited by added cofactors (NAD > NADH > NADP > NADPH) and enhanced by an argon instead of an air atmosphere. The responsible cytosolic enzyme(s) does not appear to be DT-diaphorase (which is inhibited by several neonicotinoids), aldose reductase, aldehyde reductase, or xanthine oxidase. However, the cytosolic metabolism of IMI is inhibited by several aldo-keto-reductase inhibitors (i.e., alrestatin, EBPC, Ponalrestat, phenobarbital, and quercetin). Other neonicotinoids with nitroimine, nitrosoimine, and nitromethylene substituents are probably also metabolized by "neonicotinoid nitro reductase(s)" since they serve as competitive substrates for [(3)H]IMI metabolism.
        
Title: Novel irreversible butyrylcholinesterase inhibitors: 2-chloro-1-(substituted-phenyl)ethylphosphonic acids Zhang N, Casida JE Ref: Bioorganic & Medicinal Chemistry, 10:1281, 2002 : PubMed
2-Chloroethylphosphonic acid (ethephon) as the dianion phosphorylates butyrylcholinesterase (BChE) at its active site. In contrast, the classical organophosphorus esterase inhibitors include substituted-phenyl dialkylphosphates (e.g., paraoxon) with electron-withdrawing aryl substituents. The chloroethyl and substituted-phenyl moieties are combined in this study as 2-chloro-1-(substituted-phenyl)ethylphosphonic acids (1) to define the structure--activity relationships and mechanism of BChE inhibition by ethephon and its analogues. Phenyl substituents considered are 3- and 4-nitro, 3- and 4-dimethylamino, and 3- and 4-trimethylammonium. Phosphonic acids were synthesized via the corresponding O,O-diethyl phosphonate precursors followed by deprotection with trimethylsilyl bromide. They decompose under basic conditions about 100-fold faster than ethephon to yield the corresponding styrene derivatives. Electron-withdrawing substituents on the phenyl ring decrease the hydrolysis rate while electron-donating substituents increase the rate. The 4-trimethylammonium analogue has the highest affinity (K(i)=180 microM) and potency (IC(50)=19 microM) in first binding reversibly at the substrate site (possibly with stabilization in a dianion--monoanion environment) and then progressively and irreversibly inhibiting the enzyme activity. These observations suggest dissociation of chloride as the first and rate-limiting step both in the hydrolysis and by analogy in phosphorylation of BChE by bound at the active site.
        
Title: Structural features of azidopyridinyl neonicotinoid probes conferring high affinity and selectivity for mammalian alpha4beta2 and Drosophila nicotinic receptors Zhang N, Tomizawa M, Casida JE Ref: Journal of Medicinal Chemistry, 45:2832, 2002 : PubMed
The higher toxicity of neonicotinoid insecticides such as N-(6-chloropyridin-3-ylmethyl)-2-nitroiminoimidazolidine (imidacloprid) to insects than mammals is due in large part to target site specificity at the corresponding nicotinic acetylcholine receptors (nAChRs). We propose that neonicotinoids with a protonated N-unsubstituted imine or equivalent substituent recognize the anionic subsite of the mammalian alpha4beta2 nAChR whereas the negatively charged (delta(-)) tip of the neonicotinoid insecticides interacts with a putative cationic subsite of the insect nAChR. This hypothesis can be tested by using two photoaffinity probes that differ only in the N-unsubstituted imine vs negatively charged (delta(-)) tip. Synthesis methodology was developed for compounds combining three moieties: pyridin-3-ylmethyl or 6-chloropyridin-3-ylmethyl and their 4- and 5-azido analogues; imidazolidine, 4-imidazoline or 4-thiazoline; and N-unsubstituted imine, nitroimine, cyanoimine, or nitromethylene. Structure-activity studies compared displacement of [(3)H]nicotine binding in mammalian alpha4beta2 nAChR and [(3)H]imidacloprid binding in Drosophila nAChR. Preferred compounds are N-(5-azido-6-chloropyridin-3-ylmethyl) with 2-iminothiazoline for alpha4beta2 (K(i) = 0.47 nM) and with 2-nitroiminothiazoline or 2-nitromethyleneimidazolidine for Drosophila (K(i) = 0.72-3.9 nM).
        
Title: Diethylphosphorylation of rat cardiac M2 muscarinic receptor by chlorpyrifos oxon in vitro Bomser JA, Casida JE Ref: Toxicol Lett, 119:21, 2001 : PubMed
The acute toxicity of chlorpyrifos oxon (CPO), the metabolically-activated form of the major organophosphorus insecticide chlorpyrifos, is attributable to diethylphosphorylation of acetylcholinesterase at its esteratic site. As a secondary effect, CPO is known to compete with agonist binding to the M2 muscarinic acetylcholine receptor (mAChR). This study tests the hypothesis that [ethyl-1,2-(3)H]CPO labels the M2 mAChR in rat cardiac membrane proteins. Of four labeled protein regions observed, only one had an apparent molecular mass (70-75 kDa) consistent with that of glycosylated M2 mAChR. It was identified as M2 muscarinic receptor by Western blotting and immunoprecipitation using a cardiac-specific M2 mAChR monoclonal antibody, providing the first direct evidence for diethylphosphorylation of a muscarinic receptor. This may be a functionally important M2 mAChR site, but the toxicological relevance and species and organ specificity of diethylphosphorylation are unknown.
        
Title: Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides Quistad GB, Sparks SE, Casida JE Ref: Toxicol Appl Pharmacol, 173:48, 2001 : PubMed
Organophosphorus (OP) compound-induced inhibition of acetylcholinesterase (AChE) and neuropathy target esterase explains the rapid onset and delayed neurotoxic effects, respectively, for OP insecticides and related compounds but apparently not a third or intermediate syndrome with delayed onset and reduced limb mobility. This investigation tests the hypothesis that fatty acid amide hydrolase (FAAH), a modulator of endogenous signaling compounds affecting sleep (oleamide) and analgesia (anandamide), is a sensitive target for OP pesticides with possible secondary neurotoxicity. Chlorpyrifos oxon inhibits 50% of the FAAH activity (IC50 at 15 min, 25 degrees C, pH 9.0) in vitro at 40--56 nM for mouse brain and liver, whereas methyl arachidonyl phosphonofluoridate, ethyl octylphosphonofluoridate (EOPF), oleyl-4H-1,3,2-benzodioxaphosphorin 2-oxide (oleyl-BDPO), and dodecyl-BDPO give IC50s of 0.08--1.1 nM. These BDPOs and EOPF inhibit mouse brain FAAH in vitro with > or =200-fold higher potency than for AChE. Five OP pesticides inhibit 50% of the brain FAAH activity (ED50) at <30 mg/kg 4 h after ip administration to mice; while inhibition by chlorpyrifos, diazinon, and methamidophos occurs near acutely toxic levels, profenofos and tribufos are effective at asymptomatic doses. Two BDPOs (dodecyl and phenyl) and EOPF are potent inhibitors of FAAH in vivo (ED50 0.5--6 mg/kg). FAAH inhibition of > or =76% in brain depresses movement of mice administered anandamide at 30 mg/kg ip, often leading to limb recumbency. Thus, OP pesticides and related inhibitors of FAAH potentiate the cannabinoid activity of anandamide in mice. More generally, OP compound-induced FAAH inhibition and the associated anandamide accumulation may lead to reduced limb mobility as a secondary neurotoxic effect.
        
Title: Structure and diversity of insect nicotinic acetylcholine receptors Tomizawa M, Casida JE Ref: Pest Manag Sci, 57:914, 2001 : PubMed
The nicotinic acetylcholine receptor (nAChR) is an agonist-regulated ion-channel complex responsible for rapid neurotransmission. The vertebrate nAChR, assembled from five homologous subunits, penetrates the synaptic membrane. Different subunit combinations lead to receptor subtypes with distinctive pharmacological profiles. In comparison with mammalian nAChRs, the insect receptor is poorly understood relative to functional architecture and diversity. Several genes for Drosophila, Locusta and Myzus encoding insect nAChR subunits have been identified, although the functional assembly and presence of different subtypes of these receptors are not defined. The insect nAChR is the primary target site for the neonicotinoid insecticides, thereby providing an incentive to explore its functional architecture with neonicotinoid radioligands, photoaffinity probes and affinity chromatography matrices. This review considers the current understanding of the structure and diversity of insect nAChRs based mainly on recent studies in molecular biology and protein biochemistry.
        
Title: Analgesic and toxic effects of neonicotinoid insecticides in mice Tomizawa M, Cowan A, Casida JE Ref: Toxicol Appl Pharmacol, 177:77, 2001 : PubMed
Several nicotinic agonists with the 6-chloro-3-pyridinyl moiety are potent insecticides (e.g., the neonicotinoids imidacloprid and thiacloprid) while others are candidate nonopioid and nonantiinflammatory analgesics (i.e., epibatidine and several heterocyclic analogs). This study examines the hypothesis for the first time that the neonicotinoid insecticides and their imine metabolites and analogs display analgesic (antinociceptive) activity or adverse toxic effects associated with their action on binding to the alpha 4 beta 2 nicotinic acetylcholine receptor (AChR) subtype. Seven 6-chloro-3-pyridinyl compounds were studied, i.e., imidacloprid and thiacloprid, the corresponding imines and an olefin derivative, a nitromethylene analog, and (+/-)-epibatidine. Like (-)-nicotine and carbachol, they all act as full agonists in the (86)rubidium ion efflux experiment with intact mouse fibroblast M10 cells stably expressing the alpha 4 beta 2 nicotinic AChR. Their agonist action is correlated with binding affinity to the alpha 4 beta 2 receptor from M10 cells. Imidacloprid, thiacloprid, and their imine analogs are not antinociceptive agents in mice by abdominal constriction and hot plate analgesic tests. Their agonist actions at the alpha 4 beta 2 receptor correlate instead with their toxicity. Surprisingly, the nitromethylene analog, a weak agonist, is as potent as (-)-nicotine in inducing antinociception, and the effect persists longer than that caused by (-)-nicotine. However, mecamylamine (1 mg/kg) prevents antinociception induced by (-)-nicotine but not by the nitromethylene analog. Interestingly, this nitromethylene neonicotinoid insecticide gives 80-100% mortality within 15 min at 3 mg/kg with mecamylamine pretreatment at 2 mg/kg, doses at which each agent alone gives no lethality. Therefore, analgesic and toxic effects of the nitromethylene analog differ in their mechanism of action from (-)-nicotine and (+/-)-epibatidine.
        
Title: Photoaffinity labeling of insect nicotinic acetylcholine receptors with a novel [(3)H]azidoneonicotinoid Tomizawa M, Wen Z, Chin HL, Morimoto H, Kayser H, Casida JE Ref: Journal of Neurochemistry, 78:1359, 2001 : PubMed
The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel in the insect CNS and a target for major insecticides. Here we use photoaffinity labeling to approach the functional architecture of insect nAChRs. Two candidate 5-azido-6-chloropyridin-3-yl photoaffinity probes are evaluated for their receptor potencies: azidoneonicotinoid (AzNN) with an acyclic nitroguanidine moiety; azidodehydrothiacloprid. Compared to their non-azido parents, both probes are of decreased potencies at Drosophila (fruit fly) and Musca (housefly) receptors but AzNN retains full potency at the Myzus (aphid) receptor. [(3)H]AzNN was therefore radiosynthesized at high specific activity (84 Ci/mmol) as a novel photoaffinity probe. [(3)H]AzNN binds to a single high-affinity site in Myzus that is competitively inhibited by imidacloprid and nicotine and further characterized as to its pharmacological profile with various nicotinic ligands. [(3)H]AzNN photoaffinity labeling of Myzus and Homalodisca (leafhopper) detects a single radiolabeled peak in each case displaceable with imidacloprid and nicotine and with molecular masses corresponding to approximately 45 and approximately 56 kDa, respectively. The photoaffinity-labeled receptor in both Drosophila and Musca has imidacloprid- and nicotine-sensitive profiles and migrates at approximately 66 kDa. These photoaffinity-labeled polypeptides are considered to be the insecticide-binding subunits of native insect nAChRs.
        
Title: Activation of extracellular signal-regulated kinases (ERK 44/42) by chlorpyrifos oxon in Chinese hamster ovary cells Bomser J, Casida JE Ref: J Biochem Mol Toxicol, 14:346, 2000 : PubMed
Acetylcholinesterase inhibition explains most but not all of the toxicological manifestations of exposure to the major organophosphorus insecticide chlorpyrifos (CP) and its metabolically activated form chlorpyrifos oxon (CPO); CPO is also reported to interact with muscarinic acetylcholine receptors and alter secondary messenger status. We find that CP and CPO activate extracellular signal-regulated kinases (ERK 44/42) in both wild-type (CHOK1) and human muscarinic receptor-expressing Chinese hamster ovary cells (CHO-M2). The degree of ERK 44/42 activation on treatment with 50 microM CPO for 40 minutes is 2- to 3-fold compared with control cells and is both concentration- and time-dependent. CP is at least 2-fold less potent than CPO as an activator of ERK 44/42 and the hydrolysis products 3,5,6-trichloropyridinol and diethyl phosphate are not activators. ERK 44/42 activation by CPO is insensitive to the protein kinase A inhibitor H-89, but is completely abolished by the phosphatidylinositol 3-kinase (P13-K) inhibitor wortmannin, the protein kinase C (PKC) inhibitor GF-109203X, and the mitogen-activated extracellular signal-regulated protein kinase kinase (MEK) inhibitor PD 098059. Therefore, CPO activates the ERK 44/42 signaling cascade in CHOK1 cells via a pathway dependent on P13-K, PKC, and MEK but not requiring PKA or the human M2 muscarinic receptor. In summary we find that CPO activates a mammalian signal transduction cascade involved in cell growth and differentiation. This occurs through a pathway common to growth factors and mitogens, consistent with a receptor-mediated event. However, CPO may also inhibit an enzyme involved in signal transduction. The specific target of CPO leading to the activation of ERK 44/42 and the potential effects of this activation on cell function remain to be determined.
        
Title: Phosphobutyrylcholinesterase: phosphorylation of the esteratic site of butyrylcholinesterase by ethephon [(2-chloroethyl)phosphonic acid] dianion Haux JE, Quistad GB, Casida JE Ref: Chemical Research in Toxicology, 13:646, 2000 : PubMed
Ethephon [(2-chloroethyl)phosphonic acid] has two seemingly unrelated types of biological activity. It is a major agrochemical absorbed by crops, slowly releasing ethylene as a plant growth regulator. Ethephon also inhibits the activity of plasma butyrylcholinesterase (BuChE) in humans, dogs, rats, and mice. This is totally unexpected for an ionized phosphonic acid (mostly the dianion at physiological pH), in contrast to the classical inhibitors (nonionized triester phosphates) which phosphorylate serine at the active site. This study tests the hypothesis that ethephon (as the dianion) also acts as a phosphorylating agent in inhibiting BuChE activity. The sensitivity of plasma BuChE to ethephon (90 min preincubation at 25 degrees C) is greatest for humans, dogs, and mice (IC(50) = 6-23 microM), intermediate for chickens, rabbits, rats, and guinea pigs (IC(50) = 26-53 microM), and lowest for pigs and horses (IC(50) = 92-172 microM). The IC(50) decreases linearly with time on a log-log scale to values of 0.15-0. 3 microM for human, dog, and horse BuChE at 24 h. The inhibition rate is generally related to ethephon concentration, consistent with a bimolecular reaction, e.g., phosphorylation. The extent of inhibition of the esteratic activity of BuChE by ethephon is directly proportional to the extent of inhibition of [(3)H]diisopropyl phosphorofluoridate ([(3)H]DFP) postlabeling which is not reversible on removing the ethephon, either directly or after further incubation for 24 h at 25 degrees C. These observations strongly suggest that ethephon, as DFP, phosphorylates human plasma BuChE at Ser-198 of the esteratic site, or more generally, the formation of a phosphobutyrylcholinesterase. With human plasma BuChE, (2-bromoethyl)- and (2-iodoethyl)phosphonic acids have lower affinities for the site than ethephon but higher phosphorylation rate constants, consistent with their relative hydrolysis rates at pH 7.4 (phosphorylation of water). (2-Chlorohexyl)phosphonic acid is a poor inhibitor, perhaps being too reactive with water. Thus, potency differences for ethephon and its analogues with BuChE of various species depend on both the affinities and phosphorylation rates, i.e., the binding and reactivity of the (2-haloalkyl)phosphonic acid dianion in the esteratic site.
        
Title: Sensitivity of blood-clotting factors and digestive enzymes to inhibition by organophosphorus pesticides Quistad GB, Casida JE Ref: J Biochem Mol Toxicol, 14:51, 2000 : PubMed
Organophosphorus pesticide toxicology is normally evaluated in relation to inhibition of cholinesterases (acetyl and butyryl), neuropathy target esterase, and carboxylesterases, with less attention given to other physiologically important hydrolases. This study considers the relative organophosphate sensitivities of the aforementioned serine hydrolases compared with purified blood-clotting factors (thrombin, plasmin, and kallikrein) and digestive enzymes (alpha-chymotrypsin, trypsin, and elastase), assayed under similar conditions. Inhibitors that we examined are organophosphorus insecticides or their activated metabolites (paraoxon, chlorpyrifos oxon, and profenofos) and other toxicants (phenyl saligenin cyclic phosphonate and tribufos) for comparison with values that are found in the literature for the fluorophosphonates (isoflurophate and sarin). Thrombin is the most sensitive blood-clotting factor with IC-50 values of 19 to 160 microM for tribufos, the cyclic phosphonate, isoflurophate, and profenofos; plasmin and kallikrein are less affected (IC-50 >100 microM). Alpha-Chymotrypsin, trypsin, and elastase are most sensitive to the cyclic phosphonate (IC-50 1.3-15 microM) and less so to isoflurophate, sarin, and profenofos (IC-50 values from 3.6 to greater than 100 microM). The cholinesterases, carboxylesterase, and neuropathy target esterase are the most sensitive to inhibition with IC-50 values for the insecticides of less than 0.001 to 0.6, 0.002 to 0.009, and 0.15 to 100 microM, respectively. The generally low potency of these organophosphates for blood-clotting factors and digestive enzymes suggests that associated toxic effects are unlikely at sublethal doses.
        
Title: Phosphoacetylcholinesterase: toxicity of phosphorus oxychloride to mammals and insects that can be attributed to selective phosphorylation of acetylcholinesterase by phosphorodichloridic acid Quistad GB, Zhang N, Sparks SE, Casida JE Ref: Chemical Research in Toxicology, 13:652, 2000 : PubMed
Phosphorus oxychloride (POCl(3)) is an intermediate in the synthesis of many organophosphorus insecticides and chemical warfare nerve gases that are toxic to insects and mammals by inhibition of acetylcholinesterase (AChE) activity. It was therefore surprising to observe that POCl(3), which is hydrolytically unstable, also itself gives poisoning signs in ip-treated mice and fumigant-exposed houseflies similar to those produced by the organophosphorus ester insecticides and chemical warfare agents. In mice, POCl(3) inhibits serum butyrylcholinesterase (BuChE) at a sublethal dose and muscle but not brain AChE at a lethal dose. In houseflies, POCl(3)-induced brain AChE inhibition is correlated with poisoning and the probable cause thereof. POCl(3) in vitro is selective for AChE (IC(50) = 12-36 microM) compared with several other serine hydrolases (BuChE, carboxylesterase, elastase, alpha-chymotrypsin, and thrombin) (IC(50) = 88-2000 microM). With electric eel AChE, methylcarbamoylation of the active site with eserine reversibly protects against subsequent irreversible inhibition by POCl(3). Most importantly, POCl(3)-induced electric eel AChE inhibition prevents postlabeling with [(3)H]diisopropyl phosphorofluoridate; i.e., both compounds phosphorylate at Ser-200 in the catalytic triad. Pyridine-2-aldoxime methiodide does not reactivate POCl(3)-inhibited AChE, consistent with an anionic phosphoserine residue at the esteratic site. The actual phosphorylating agent is formed within seconds from POCl(3) in water, has a half-life of approximately 2 min, and is identified as phosphorodichloridic acid [HOP(O)Cl(2)] by (31)P NMR and derivatization with dimethylamine to HOP(O)(NMe(2))(2). POCl(3) on reaction with water and HOP(O)Cl(2) have the same potency for inhibition of AChE from either electric eel or housefly head as well as the same toxicity for mice. In summary, the acute toxicity of POCl(3) is attributable to hydrolytic activation to HOP(O)Cl(2) that phosphorylates AChE at the active site to form enzymatically inactive [O-phosphoserine]AChE.
        
Title: Imidacloprid, thiacloprid, and their imine derivatives up-regulate the alpha 4 beta 2 nicotinic acetylcholine receptor in M10 cells Tomizawa M, Casida JE Ref: Toxicol Appl Pharmacol, 169:114, 2000 : PubMed
Neonicotinoids are the most important new class of insecticides of the last decade. They act as nicotinic acetylcholine receptor (AChR) agonists. This investigation tests the hypothesis for the first time that neonicotinoid insecticides and their imine derivatives up-regulate the alpha 4 beta 2 nicotinic AChR subtype, which represents >90% of the high-affinity [(3)H]nicotine binding sites in mammalian brain. The alpha 4 beta 2 receptor stably expressed in mouse fibroblast M10 cells was assayed after 3 days' exposure to the test compound, as [(3)H]nicotine binding following immunoisolation by monoclonal antibody (mAb 299) or as [(125)I]mAb 299 labeling for cell surface receptors. We found that imidacloprid (IMI) (one of the most important insecticides) and thiacloprid (THIA) increased [(3)H]nicotine binding levels (up-regulation of the alpha 4 beta 2 AChRs) by five- to eightfold with EC50s of approximately 70,000 and 19,000 nM, respectively, compared with 760 nM for (-)-nicotine. In contrast, two imine analogs [the desnitro metabolite of IMI (DNIMI) and the descyano derivative of THIA] gave up-regulation by eightfold and EC50s of 870 and 500 nM, respectively. The potency order for up-regulation by the five aforementioned compounds was correlated with their in vitro IC50s for inhibiting [(3)H]nicotine binding (r(2) = 0.99, n = 5), indicating that binding to the alpha 4 beta 2 receptor initiates the up-regulation. A potent olefin derivative of the THIA imine up-regulated with an EC50 of 22 nM. DNIMI-induced up-regulation mainly occurred intracellularly rather than at the cell surface. These findings in alpha 4 beta 2-expressing M10 cells indicate the possibility that some neonicotinoid insecticides or their metabolites, on accidental human exposure or when used for flea control on dogs, may also up-regulate the receptor in mammals.
        
Title: Neonicotinoid insecticides: molecular features conferring selectivity for insect versus mammalian nicotinic receptors Tomizawa M, Lee DL, Casida JE Ref: Journal of Agricultural and Food Chemistry, 48:6016, 2000 : PubMed
The favorable selective toxicity of neonicotinoid insecticides (represented here by imidacloprid, thiacloprid, and a nitromethylene analogue) for insects versus mammals is not shared by three of their N-unsubstituted imine derivatives or by nicotine or epibatidine. The same selectivity pattern is evident at the receptor level, i.e., the insect nicotinic acetylcholine receptor (nAChR) versus mammalian nAChR subtypes (alpha1, alpha3, alpha4, and alpha7) assayed independently. The insect-selective compounds are not protonated with a nitroimine, cyanoimine, or nitromethylene group and the mammalian-selective compounds are ionized at physiological pH. We propose that the negatively charged tip of the nitro or cyano group (not a partial positive charge at imidazolidine N-1 as suggested earlier) interacts with a putative cationic subsite of the insect nAChR. This contrasts with the mammalian nAChRs where the iminium cation (+C-NH2 <--> C =+NH2) of the neonicotinoid imine derivatives or ammonium nitrogen of nicotine or epibatidine interacts with the anionic subsite.
        
Title: Insect nicotinic acetylcholine receptor: conserved neonicotinoid specificity of [(3)H]imidacloprid binding site Zhang A, Kayser H, Maienfisch P, Casida JE Ref: Journal of Neurochemistry, 75:1294, 2000 : PubMed
The insect nicotinic acetylcholine receptor (nAChR) is a major target for insecticide action. The rapidly expanding use of neonicotinoid insecticides of varied structures makes it increasingly important to define similarities and differences in their action, particularly for the first-generation chloropyridinyl compounds versus the second-generation chlorothiazolyl derivatives. We have shown with Musca domestica that a convenient and relevant determination of the neonicotinoid insecticide target is a binding site assay with [(3)H]imidacloprid ([(3)H]IMI). This study uses membranes from the aphids MYZUS: persicae and Aphis craccivora and from heads of the flies Drosophila melanogaster and Musca domestica to characterize the [(3)H]IMI binding sites relative to their number and possible species variation in structure-activity relationships. With emphasis on commercial neonicotinoids, six potent chloropyridinyl compounds are compared with the corresponding six chlorothiazolyl analogues (syntheses are given for chemicals prepared differently than previously described). The preference for chloropyridinyl versus chlorothiazolyl is not dependent on the insect species examined but instead on other structural features of the molecule. The chlorothiazolyl substituent generally confers higher potency in the clothianidin and desmethylthiamethoxam series and the chloropyridinyl moiety in the imidacloprid, thiacloprid, acetamiprid, and nitenpyram series. Two chlorothiazolyl compounds compete directly with the chloropyridinyl [(3)H]IMI for the same binding sites in Myzus and Drosophila membranes. This study shows conserved neonicotinoid specificity of the [(3)H]IMI binding site in each of the four insect species examined.
        
Title: Localization of [3H]octylphosphonyl-labeled neuropathy target esterase by chicken nervous tissue autoradiography Kamijima M, Casida JE Ref: Neuroscience Letters, 273:101, 1999 : PubMed
Neuropathy target esterase (NTE) undergoes phosphorylation and aging as the initial steps in organophosphorus (OP)-induced delayed neuropathy (OPIDN). Localization of NTE is an important step in characterizing the mechanism of OPIDN. Earlier histochemical immunoreactivity or esterase assays localized NTE in areas of the brain and spinal cord rich in neuronal cell bodies and in the dorsal root ganglion. We use a more direct and quantitative autoradiographic approach of forming phosphorylated and aged [3H]octylphosphonyl-NTE on treatment with the highly potent [octyl-3H]octyl-4H-1,3,2-benzodioxaphosphorin 2-oxide to determine NTE as the labeling site resistant to the non-neuropathic paraoxon and sensitive to the neuropathic mipafox. NTE is observed in the cerebral cortical layer, some layers of the optic tectum, the gray matter of the spinal cord and the sensory neurons of the dorsal root ganglion to a higher extent than in adjacent areas.
        
Title: Novel and potent 6-chloro-3-pyridinyl ligands for the alpha4beta2 neuronal nicotinic acetylcholine receptor Latli B, D'Amour K, Casida JE Ref: Journal of Medicinal Chemistry, 42:2227, 1999 : PubMed
1-[(6-Chloro-3-pyridinyl)methyl]-2-imidazolidine (1), the N-desnitro metabolite of the major insecticide imidacloprid, is known to have similar potency to that of (-)-nicotine as an inhibitor of [3H](-)-nicotine binding at the rat recombinant alpha4beta2 neuronal nicotinic acetylcholine receptor (nAChR); IC50 values in the present study are 3.8 nM for (-)-nicotine, 6.0 nM for 1, and 155 nM for imidacloprid. Synthesis of new analogues of 1, modified only in the heterocyclic moiety (five-, six-, or seven-membered rings with NH, S, O, and CH2 substituents), gave compounds varying from 4-fold higher potency (2-iminothiazole analogue 10) to >6000-fold less active than (-)-nicotine. Other potent N-[(6-chloro-3-pyridinyl)methyl] compounds are those in which the heterocyclic imine is replaced with pyrrolidine (19) (IC50 9 nM) or trimethylammonium (22) (IC50 18 nM). A novel conversion of (-)-nicotine to its 6-chloro analogue increased the potency 2-fold. These 6-chloro-3-pyridinyl compounds are of interest as novel nAChR probes and potential metabolites of candidate insecticides.
        
Title: Organophosphorus pesticide-induced butyrylcholinesterase inhibition and potentiation of succinylcholine toxicity in mice Sparks SE, Quistad GB, Casida JE Ref: J Biochem Mol Toxicol, 13:113, 1999 : PubMed
Succinylcholine is the most important rapid-acting depolarizing muscle relaxant during anesthesia. Its desirable short duration of action is controlled by butyrylcholinesterase, the detoxifying enzyme. There are two reported cases of prolonged paralysis from succinylcholine in patients poisoned with the organophosphorus insecticides parathion and chlorpyrifos. The present study examines the possibility that other organophosphorus and methylcarbamate pesticides might also prolong succinylcholine action by inhibiting butyrylcholinesterase using mice treated intraperitoneally as a model and relating inhibition of blood serum hydrolysis of butyrylthiocholine to potentiated toxicity (mouse mortality). The organophosphorus plant defoliant tribufos (4 h pretreatment, 160 mg/kg) and organophosphorus plant growth regulator ethephon (1 h pretreatment, 200 mg/kg) potentiate the toxicity of succinylcholine by seven- and fourfold, respectively. Some other pesticides or analogs are more potent sensitizers for succinylcholine toxicity with threshold levels of 0.5, 1.0, 1.7, 8, 10, and 67 mg/kg for phenyl saligenin cyclic phosphonate, profenofos, methamidophos, tribufos, chlorpyrifos, and ethephon, respectively. Enhanced mortality from succinylcholine is generally observed when serum butyrylcholinesterase is inhibited 55-94%. Mivacurium, a related nondepolarizing muscle relaxant also detoxified by butyrylcholinesterase, is likewise potentiated by at least threefold on 4 hour pretreatment with tribufos (25 mg/kg) or profenofos (10 mg/kg).
        
Title: Minor structural changes in nicotinoid insecticides confer differential subtype selectivity for mammalian nicotinic acetylcholine receptors Tomizawa M, Casida JE Ref: British Journal of Pharmacology, 127:115, 1999 : PubMed
The major nitroimine insecticide imidacloprid (IMI) and the nicotinic analgesics epibatidine and ABT-594 contain the 6-chloro-3-pyridinyl moiety important for high activity and/or selectivity. ABT-594 has considerable nicotinic acetylcholine receptor (AChR) subtype specificity which might carry over to the chloropyridinyl insecticides. This study considers nine IMI analogues for selectivity in binding to immuno-isolated alpha1, alpha3 and alpha7 containing nicotinic AChRs and to purported alpha4beta2 nicotinic AChRs. Alpha1- and alpha3-containing nicotinic AChRs (both immuno-isolated by mAb 35, from Torpedo and human neuroblastoma SH-SY5Y cells, respectively) are between two and four times more sensitive to DN-IMI than to (-)-nicotine. With immuno-isolated alpha3 nicotinic AChRs, the tetrahydropyrimidine analogues of IMI with imine or nitromethylene substituents are 3-4 fold less active than (-)-nicotine. The structure-activity profile with alpha3 nicotinic AChRs from binding assays is faithfully reproduced in agonist potency as induction of 86rubidium ion efflux in intact cells. Alpha7-containing nicotinic AChRs of SH-SY5Y cells (immuno-isolated by mAb 306) and rat brain membranes show maximum sensitivity to the tetrahydropyrimidine analogue of IMI with the nitromethylene substituent. The purported alpha4beta2 nicotinic AChRs [mouse (Chao & Casida, 1997) and rat brain] are similar in sensitivity to DN-IMI, the tetrahydropyrimidine nitromethylene and nicotine. The commercial insecticides (IMI, acetamiprid and nitenpyram) have low to moderate potency at the alpha3 and purported alpha4beta2 nicotinic AChRs and are essentially inactive at alpha1 and alpha7 nicotinic AChRs. In conclusion, the toxicity of the analogues and metabolites of nicotinoid insecticides in mammals may involve action at multiple receptor subtypes with selectivity conferred by minor structural changes.
        
Title: Organophosphorus neuropathy target esterase inhibitors selectively block outgrowth of neurite-like and cell processes in cultured cells Li W, Casida JE Ref: Toxicol Lett, 98:139, 1998 : PubMed
This study compares two direct-acting neuropathy target esterase (NTE) inhibitors (mipafox and 2-octyl-4H-1,3,2-benzodioxophosphorin 2-oxide (OBDPO)), a metabolic precursor to an NTE inhibitor (tri-o-cresyl phosphate or TOCP) and a potent acetylcholinesterase inhibitor (chlorpyrifos oxon or CPO) for their effects on outgrowth of neurite-like and cell processes and on viability in differentiated cultured cells (rat adrenal pheochromocytoma (PC-12) and brain glial tumor (C6)). The direct-acting NTE inhibitors block process outgrowth by 50% or more at 50-100 microM for OBDPO and 100-200 microM for mipafox, well below their cytotoxic levels (EC50 values, 445-474 microM for OBDPO and 1021-1613 microM for mipafox). In contrast, the effects on process development for TOCP and CPO parallel their cytotoxicity. These findings suggest that inhibition of neurite-like and cell process outgrowth by OBDPO and mipafox may be associated with NTE inhibition.
        
Title: Oxidative bioactivation of methamidophos insecticide: synthesis of N- hydroxymethamidophos (a candidate metabolite) and its proposed alternative reactions involving N-->O rearrangement or fragmentation through a metaphosphate analogue Mahajna M, Casida JE Ref: Chemical Research in Toxicology, 11:26, 1998 : PubMed
The systemic insecticide methamidophos, MeO(MeS)P(O)NH2, is a very weak inhibitor of acetylcholinesterase (AChE) in vitro relative to in vivo suggesting bioactivation. This hypothesis is supported by finding that brain AChE inhibition and poisoning signs from methamidophos are greatly delayed in mice and houseflies pretreated with oxidase inhibitors in an order for effectiveness of methimazole > N-benzylimidazole >> piperonyl butoxide. In contrast, the order for delaying parathion-induced AChE inhibition and toxicity is N-benzylimidazole >> piperonyl butoxide or methimazole, suggesting that different oxidases are involved in methamidophos and parathion activation. N-Hydroxylation is examined here as an alternative to the controversial S-oxidation proposed earlier for methamidophos activation. N-Hydroxymethamidophos [MeO(MeS)P(O)NHOH], synthesized by coupling MeO(MeS)P(O)Cl and Me3SiNHOSiMe3 followed by desilylation, is unstable at pH 7.4 (t1/2 = 10 min at 37 degrees C) with decomposition by two distinct and novel mechanisms. The first mechanism (A) is N-->O rearrangement to MeO(MeS)P(O)ONH2 and then hydrolysis to MeO(MeS)P(O)OH, a sequence also established in the analogous series of (MeO)2P(O)NHOH-->(MeO)2P(O)ONH2-->(MeO)2P(O)OH. The second mechanism (B) is proposed to involve tautomerism to the phosphimino form [MeO(MeS)P(OH)=NOH] that eliminates MeSH forming a metaphosphate analogue [MeOP(O)=NOH] trapped by water to give MeO(HO)P(O)NHOH that undergoes the N-->O rearrangement as above and hydrolysis to MeOP(O)(OH)2. As a metaphosphate analogue, the metaphosphorimidate generated from MeO(MeS)P(O)NHOH in aqueous ethanol yields MeOP(O)(OH)2 and MeO(EtO)P(O)OH in the same ratio as the solvents on a molar basis. Reactions of the N- and O-methyl derivatives of MeO(MeS)P(O)NHOH and (MeO)2P(O)NHOH are consistent with proposed mechanisms A and B. N-Hydroxymethamidophos is less potent than methamidophos as an AChE inhibitor and toxicant possibly associated with its rapid hydrolysis. Bioactivation of methamidophos via a metaphosphate analogue would directly yield a phosphorylated and aged AChE resistant to reactivating agents, an intriguing hypothesis worthy of further consideration.
        
Title: 1,3-Dichloropropene epoxides: intermediates in bioactivation of the promutagen 1,3-dichloropropene Schneider M, Quistad GB, Casida JE Ref: Chemical Research in Toxicology, 11:1137, 1998 : PubMed
1,3-Dichloropropene (1,3-D), a major soil fumigant nematicide, is genotoxic in many types of assays, leading to its classification as possibly carcinogenic in humans. This study tests in three steps the hypothesis that 1,3-D is a promutagen activated by epoxidation and further reaction of the 1,3-D-epoxides. Stereospecific epoxidation of 1,3-D (examined as the cis/trans mixture and as individual isomers) to the corresponding cis- and trans-1,3-D-epoxides is demonstrated here for the first time, both in vitro in a mouse liver microsome-NADPH system and in vivo in the liver of ip-treated mice, using GC/MS for product identification and quantitation. The cis epoxide is observed in higher yield than the trans epoxide, both in vitro and in vivo, and the cis isomer also reacts slower than the trans isomer with GSH alone or catalyzed by GSH S-transferase. cis- and trans-1,3-D-Epoxides are stable in acetone or chloroform but degrade completely in Me2SO exclusively to 2-chloroacrolein (30 min at 40 degrees C). Epoxide decomposition is slower in pH 7.4 phosphate buffer (t1/2 = 116 and 64 min for cis and trans, respectively, at 41 degrees C) with a >99% yield of 3-chloro-2-hydroxypropanal (and its dimer) and <0.5% formation of 2-chloroacrolein (for which the t1/2 is 248 min at 41 degrees C). Mutagenicity assays in Salmonella typhimurium TA100 (standard plate incorporation) establish high potencies of 37, 17, and 150 revertants/nmol for cis- and trans-1, 3-D-epoxides and 2-chloroacrolein, respectively. The mutagenicity of the epoxides is due either to their direct action or to a degradation product formed at physiological pH, i.e., 3-chloro-2-hydroxypropanal or its dehydrochlorination products. The candidate mutagens methylglyoxal and glycidaldehyde are not detected as breakdown products of 3-chloro-2-hydroxypropanal at pH 7.4 and also have low mutagenic activity in TA100. It is therefore proposed that the penultimate and ultimate mutagens of 1,3-D metabolism are the corresponding epoxides and their direct hydrolysis product 3-chloro-2-hydroxypropanal, respectively.
        
Title: Whitefly (Hemiptera: Aleyrodidae) binding site for imidacloprid and related insecticides: a putative nicotinic acetylcholine receptor Chao SL, Dennehy TJ, Casida JE Ref: J Econ Entomol, 90:879, 1997 : PubMed
Imidacloprid is used extensively to control sweetpotato whiteflies, Bemisia argentifolii Bellows & Perring [also known as B. tabaci (Gennadius) biotype B]. As a radioligand, [3H]imidacloprid binds rapidly to a single class of high-affinity sites in membrane preparations from whole adult whiteflies with an apparent dissociation constant of 2 nM and maximal binding capacity of 101 fmol/mg protein. Three related compounds (the nitromethylene analog of imidacloprid, acetamiprid, and nitenpyram) inhibit [3H]imidacloprid binding by 50% at 0.40, 2.9, and 57 nM, respectively. The pharmacological profile of the binding site (examined with imidacloprid and the analogs listed above, and nicotine, alpha-bungarotoxin, carbachol, acetylcholine [with paraoxon], and atropine) is consistent with that anticipated for a nicotinic acetylcholine receptor and correlates well with binding results for house fly, Musca domestica L., head membranes under the same conditions. Thus, [3H]imidacloprid is a suitable radioligand to investigate the putative nicotinic acetylcholine receptor of Bemisia and the possible modifications of this target site associated with selection of resistant strains.
        
Title: Actions of two highly potent organophosphorus neuropathy target esterase inhibitors in mammalian cell lines Li W, Casida JE Ref: Toxicol Lett, 92:123, 1997 : PubMed
Neuropathy target esterase (NTE) is inhibited by many organophosphorus compounds that induce delayed neuropathy. This study examines two of the most potent NTE inhibitors, 2-octyl-4H-1,3,2-benzodioxaphosphorin 2-oxide (OBDPO) and ethyl octylphosphonofluoridate (EOPF), in cell lines with neural properties (PC-12 and NB41A3) and of nonneural origin (C6 and HeLa). NTE-like esteratic activity is higher in PC-12, HeLa and C6 cells than in NB41A3 cells and in each case is inhibited 50% by OBDPO and EOPF at 0.03-3.4 nM in vitro and by OBDPO at 0.080-36 nM in situ in culture. An NTE-like protein(s) of about 155 kDa is phosphorylated and labeled by [3H-octyl]OBDPO in these cell lines in the same order as their relative NTE esteratic activity. Cytotoxic levels of OBDPO and EOPF (300-500 microM) are generally 10(5) to > 10(7)-fold higher than required for NTE inhibition. PC-12 cells and OBDPO/[3H]OBDPO and EOPF are therefore suitable for research on non-lethal biochemical disruptions from NTE phosphorylation and aging.
        
Title: Acephate insecticide toxicity: safety conferred by inhibition of the bioactivating carboxyamidase by the metabolite methamidophos Mahajna M, Quistad GB, Casida JE Ref: Chemical Research in Toxicology, 10:64, 1997 : PubMed
Acephate is an important systemic organophosphorus insecticide with toxicity attributed to bioactivation on metabolic conversion to methamidophos (or an oxidized metabolite thereof) which acts as an acetylcholinesterase (AChE) inhibitor. The selective toxicity of acephate is considered to be due to facile conversion to methamidophos in insects but not mammals. We show in the present investigation that a carboxyamidase activates acephate in mice and in turn undergoes inhibition by the hydrolysis product, i.e., methamidophos; thus, the bioactivation is started but immediately turned off. These relationships are established by finding that 4 h pretreatment of mice with methamidophos i.p. at 5 mg/kg has the following effects on acephate action: reduces methamidophos and acephate levels in liver by 30-60% in the first 2 h after i.p. acephate dosage; inhibits the liver carboxyamidase cleaving [14CH3S]acephate to [14CH3S]methamidiphos with 50% block at approximately 1 mg/kg; strongly inhibits 14CO2 liberation from [CH3(14)C(O)]acephate in vivo; markedly alters the pattern of urinary metabolites of acephate by increasing O- and S-demethylation products retaining the carboxyamide moiety; greatly reduces the brain AChE inhibition following acephate treatment; doubles the LD50 of i.p.-administered acephate from 540 to 1140 mg/kg. Methamidophos pretreatment in rats also markedly alters the metabolism of dimethoate (another systemic insecticide) from principally carboxyamide hydrolysis to mainly other pathways. In contrast, methamidophos pretreatment of houseflies does not alter the acephate-induced toxicity and brain AChE inhibition. The safety of acephate in mammals therefore appears to be due to conversion in small part to methamidophos which, acting directly or as a metabolite, is a potent carboxyamidase inhibitor, thereby blocking further activation.
        
Title: S-methylation of O,O-dialkyl phosphorodithioic acids: O,O,S-trimethyl phosphorodithioate and phosphorothiolate as metabolites of dimethoate in mice Mahajna M, Quistad GB, Casida JE Ref: Chemical Research in Toxicology, 9:1202, 1996 : PubMed
O,O,S-Trimethyl phosphorodithioate and phosphorothiolate [(MeO)2P(S)SMe and (MeO)2P-(O)SMe, respectively are known from earlier studies to be impurities, delayed toxicants, and detoxication inhibitors in several major O,O-dimethyl phosphorodithioate insecticides. Our recent studies show extensive S-methylation of mono- and dithiocarbamic acids in mice, suggesting the possibility that phosphorodithioic acids such as (MeO)2P(S)SH might also undergo S-methylation. This possibility was examined in ip-treated mice with emphasis on the metabolites of dimethoate [(MeO)2P(S)SCH2C(O)NHMe], one of the most important organophosphorus insecticides. The urinary metabolites of dimethoate, which contains no P-SMe substituent, were found to include four compounds with P-SMe moieties identified by 31P NMR spectroscopy as MeO(HS)P(O)SMe, MeO(HO)P(O)SMe, (MeO)2P(S)SMe, and (MeO)2P-(O)SMe; the latter two compounds are also established by GC-MS as dimethoate metabolites in mouse urine, liver, kidney, and lung. Several approaches verified unequivocally that the previously unknown P-SMe metabolites in urine and tissues are due to in vivo S-methylation rather than to impurities. Studies with other O,O-dimethyl and O,O-diethyl phosphorodithioate insecticides established the analogous S-methylation pathway for ethion, malathion, phenthoate, phosalone, and phosmet in mice. Thus, metabolism of O,O-dialkyl phosphorodithioate insecticides in mammals is shown here for the first time to yield S-methyl phosphorodithioates and phosphorothiolates from in vivo S-methylation of the intermediate O,O-dialkyl phosphorodithioic acids.
        
Title: Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors Tomizawa M, Latli B, Casida JE Ref: Journal of Neurochemistry, 67:1669, 1996 : PubMed
Neonicotinoids such as the insecticide imidacloprid (IMI) act as agonists at the insect nicotinic acetylcholine receptor (nAChR). Head membranes of Drosophila melanogaster and Musca domestica have a single high-affinity binding site for [3H]IMI with KD values of 1-2 nM and Bmax values of 560-850 fmol/mg of protein. Locusta and Periplaneta nAChRs isolated with an alpha-bungarotoxin (alpha-BGT)-agarose affinity column are known to be alpha-subunit homooligomers. This study uses 1-[N-(6-chloro-3-pyridylmethyl)-N-ethyl]amino-1-amino-2-nitroethene++ + (which inhibits [3H]IMI binding to Drosophila and Musca head membranes at 2-3 nM) to develop a neonicotinoid-agarose affinity column. The procedure-introduction of Triton-solubilized Drosophila or Musca head membranes into this neonicotinoid-based column, elution with IMI, and analysis by lithium dodecyl sulfate-polyacrylamicle gel electrophoresis-gives only three proteins (69, 66, and 61 kDa) tentatively assigned as putative subunits of the nAChR; the same three proteins are obtained with Musca using the alpha-BGT-agarose affinity column. Photoaffinity labeling of the Drosophila and Musca putative subunits from the neonicotinoid column with 125I-alpha-BGT-4-azidosalicylic acid gives a labeled derivative of 66-69 kDa. The yield is 2-5 micrograms of receptor protein from 1 g of Drosophila or Musca heads. Neonicotinoid affinity chromatography to isolate native Drosophila and Musca receptors will facilitate studies on the structure and function of insect nAChRs.
        
Title: Subacute neurotoxicity induced in mice by potent organophosphorus neuropathy target esterase inhibitors Wu SY, Casida JE Ref: Toxicology & Applied Pharmacology, 139:195, 1996 : PubMed
The mouse is considered to be insensitive and the hen sensitive to clinical expression of organophosphorus-induced delayed neuropathy (OPIDN) which is associated with inhibition of neuropathy target esterase (NTE). This species difference is reevaluated with two optimized inhibitors of hen brain NTE by examining them for potential neurotoxic effects in mice. 2-Octyl-4H-1,3,2-benzodioxaphosphorin 2-oxide (OBDPO) and ethyl octylphosphonofluoridate (EOPF) inhibit mouse brain NTE in vitro by 50% at 0.12 and 0.02 nM and induce neurotoxic signs in mice at 10 and 5 mg/kg, respectively. The action of these compounds in both l- and 6-month-old mice, sometimes after early transient cholinergic signs, involves ataxia, paralysis, and death in 1 to 3 days and is accordingly referred to as subacute neurotoxicity. The neurotoxic signs are associated with brain edema and severe vacuolation in the grey matter of the brain and spinal cord, particularly the neuropile. Subacute neurotoxic signs are always associated with at least 80% inhibition of brain NTE activity 16-24 hr after treatment. Acetylcholinesterase and butyrylcholinesterase are much less sensitive than NTE to inhibition by OBDPO and EOPF both in vitro and in vivo. Selected carbamates, thiocarbamates, phosphinates, and sulfanyl fluorides are prophylactic agents and dipentyl 2,2-dichlorovinyl phosphate is a promoter for OBDPO-induced subacute neurotoxicity. Although this type of neurotoxicity in mice is similar to OPIDN in the correlation with NTE inhibition and the prophylactic action of reversible NTE inhibitors, it differs from OPIDN in the delay time prior to onset, the sensitivity of both young and old animals, and the high incidence of fatality. A full neuropathological study is desirable to further characterize this subacute neurotoxicity.
        
Title: Imidacloprid Binding Site in Musca Nicotinic Acetylcholine Receptor: Interactions with Physostigmine and a Variety of Nicotinic Agonists with Chloropyridyl and Chlorothiazolyl Substituents Liu MY, Latli B, Casida JE Ref: Pesticide Biochemistry and Physiology, 52:170, 1995 : PubMed
[3H]Imidacloprid ([3H]IMI) is known to bind with high affinity to the nicotinic acetylcholine receptor (nAChR) agonist site in Musca domestica L. (Musca) head membranes. Physostigmine (PHY) is reported to act in vertebrates at the nAChR ion-channel complex as an activator at low concentrations and an open channel blocker at high levels. PHY inhibits [3H]IMI binding in Musca with an IC50 of 8 uM. The binding site for PHY appears to be associated with the nAChR since the potency of PHY is decreased 2.3- to 13-fold by (-)-nicotine but little if any by carbachol, each at 1 uM. Acetylcholine (ACh) serves as both a competitive inhibitor of [3H]IMI binding, reducing the rates of association and dissociation in a biphasic manner, and a substrate for acetylcholinesterase (AChE), which is in turn inhibited by PHY. PHY at 0.1 and 1 uM appears to be a competitive inhibitor of [3H]IMI binding, whereas at 100 uM it is noncompetitive and increases the Kd by 25-fold and Bmax by 2.2-fold. PHY at 0.1 uM increases the apparent potency of ACh as an inhibitor of [3H]IMI binding, due to AChE inhibition, whereas at 10 and 100 uM it does not alter the IC50s of ACh. These overall findings indicate an apparent allosteric interaction between the [3H]IMI and PHY binding sites. The high structural specificity of PHY in this region is established by finding that eseroline is also active (IC50 = 40 uM) and that over 140 methyl- and dimethylcarbamate and organophosphorus insecticides and related compounds are not inhibitory at 10 uM. [3H]IMI binding is also inhibited by the chloronicotinyl analgetic agent epibatidine (IC50 = 350 nM) and by six cyanoimine insecticides including chloronicotinyl and chlorothiazolyl analogs. The inhibitory potency of acetamiprid (IC50 = 3.2 nM) and other cyanoimines at the nAChR agonist site correlates well (r = 0.98, n = 6) with their intrinsic toxicity to Musca (i.e., their knockdown or lethal effects on injection and with a synergist to minimize oxidative detoxification). [3H]IMI is therefore a suitable radioligand for investigating the interaction of PHY and a variety of nicotinic agonists with chloropyridyl and chlorothiazolyl substituents at the insect nAChR.
        
Title: S-methylation as a bioactivation mechanism for mono- and dithiocarbamate pesticides as aldehyde dehydrogenase inhibitors Staub RE, Sparks SE, Quistad GB, Casida JE Ref: Chemical Research in Toxicology, 8:1063, 1995 : PubMed
S-Methylation is a new bioactivation mechanism for metam and metabolites of methyl isothiocyanate and dazomet in mice. These soil fumigants are converted to S-methyl metam [MeNHC(S)SMe] which reaches peak levels in liver, kidney, brain, and blood 10-20 min after intraperitoneal (ip) treatment. The half-life of S-methyl metam administered ip is 8-12 min in each of these tissues. S-Methyl metam-oxon [MeNHC(O)SMe] is also detected as a metabolite of each of these soil fumigants on analysis by gas chromatography/mass spectrometry with chemical ionization. The conversion of methyl isothiocyanate to S-methyl metam and its oxon probably involves conjugation with glutathione, hydrolysis to S-(N-methylthiocarbamoyl)-cysteine, cleavage by cysteine conjugate beta-lyase to release metam, and finally methylation and oxidative desulfuration. Metam and dazomet are converted to S-methyl metam by mouse liver microsomes on fortification with S-adenosylmethionine. Metam, methyl isothiocyanate, dazomet, and three metabolites (metam-oxon [MeNHC(O)SH], MeNHC(S)SMe, and MeNHC-(O)SMe) administered ip to mice at 40 mg/kg inhibit low-Km liver mitochondrial aldehyde dehydrogenase and elevate ethanol-dependent blood and brain acetaldehyde levels. Several fungicides including the dialkyldithiocarbamates as the disulfide (thiram and the related alcohol-abuse drug disulfiram) and metal salts (ziram) also yield S-methyl thiocarbamate metabolites. Eight S-alkyl and S-(chloroallyl) thiocarbamate herbicides (EPTC, molinate, butylate, vernolate, pebulate, diallate, sulfallate, and triallate), but not their S-chlorobenzyl analog (thiobencarb), undergo sequential liberation of the thiocarbamic acid and then S-methylation, forming the S-methyl thiocarbamates which are new metabolites and potential aldehyde dehydrogenase inhibitors. The S-methyl mono- and dithiocarbamate metabolites of these herbicides and fungicides are easily identified by retention time on gas chromatography and by mass spectrometry giving [MH]+ plus [R1R2NCO]+ or [R1R2NCS]+, respectively, as the two major ions.
        
Title: Neuropathy target esterase of hen brain: active site reactions with 2-[octyl-3H]octyl-4H-1,3,2-benzodioxaphosphorin 2-oxide and 2-octyl-4H-1,3,2-[aryl-3H]benzodioxaphosphorin 2-oxide Yoshida M, Tomizawa M, Wu SY, Quistad GB, Casida JE Ref: Journal of Neurochemistry, 64:1680, 1995 : PubMed
2-Octyl-4H-1,3,2-benzodioxaphosphorin 2-oxide (octyl-BDPO) is one of the most potent inhibitors known for neuropathy target esterase (NTE) of hen brain with 50% inhibition at 0.2 nM. Two NTE-like proteins, i.e., resistant to paraoxon and sensitive to mipafox, of approximately 155 and approximately 119 kDa (designated NTE-155 and NTE-119, respectively) are labeled by [octyl-3H]octyl-BDPO and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Labeling with [aryl-3H]octyl-BDPO is only approximately 15% of that with [octyl-3H]octyl-BDPO, indicating that the majority of the phosphorylated NTE undergoes aging with only a small proportion of nonaged target or intramolecular group transfer ("alkylation"). NTE-155 and NTE-119 have the same kinetic constants and maximal number of phosphorylation sites, equivalent for each of them to 26 fmol/mg of protein and totaling at least 0.44-1.2 micrograms of NTE protein/g of brain. Structure-activity investigations involving 17 combinations of organophosphorus (OP) compounds of varied chemical type, stereochemistry, and concentration establish an excellent correlation (r = 0.95) between inhibition of NTE activity and protein labeling and thereby the toxicological relevance of these assays, which equally implicate NTE-155 and NTE-119 (probably an autolysis product of NTE-155) as target in OP-induced delayed neuropathy. [octyl-3H]-Octyl-BDPO is an improved probe for NTE in terms of its potency, reactivity, selectivity, and the formation of 3H-labeled NTE with a stable phosphorus-carbon bond.
        
Title: Nitromethyleneimidazolidine Radioligand ([3H]NMI): High Affinity and Cooperative Binding for House Fly Acetylcholine Receptor Liu MY, Latli B, Casida JE Ref: Pesticide Biochemistry and Physiology, 50:171, 1994 : PubMed
1-[N-(2-Chloro-5-thiazolylmethyl)]-2-nitromethylene-imidazolidine (NMI) is a very potent insecticide and is 6-fold more effective than imidacloprid (IMI) in displacing [3H]IMI from its binding site in the house fly acetylcholine (ACh) receptor (AChR). NMI differs from IMI in two isosteric replacements, i.e., 2-chloro-5-thiazolyl (CT) for 6-chioro-3-pyridinyl (CP) and nitromethylene for nitroimine. The CP and CT moieties in this series confer almost equivalent potency and binding properties allowing intercomparisons based on the nitromethylene and nitroimine substituents. [3H]NMI (55 Ci/mmol) was prepared from 2-chloro-5-(carbethoxy)thiazole by reducing with lithium aluminum tritide to the alcohol which was converted to the chloromethyl derivative and then coupled with ethylenediamine followed by reaction with 1,1-bis(methylthio)-2-nitroethylene. Binding parameters in house fly head membranes treated with Triton X-100 are very similar for [3H]NMI and [3H]IMI, each with a single saturable specific binding site of Kd = 1.2 nM and Bmax = 853-897 fmol/mg protein, and there are also similar initial rates of association and dissociation for the two radioligands. However, there is a significant difference in the Hill coefficient with 1.4 +/- 0.06 for NMI and 1.0 +/- 0.1 for IMI. Without Triton X-100 treatment, there are both low and high affinity binding components for [3H]IMI but only a low affinity one for [3H]NMI. Competing ligands are less effective at displacing [3H]NMI than [3H]IMI, e.g., 9-fold for ACh (with paraoxon to inhibit acetylcholinesterase), 40-fold for carbachol, and 2- to 6-fold for the nicotinic agents (-)-nicotine and -bungarotoxin. The enhanced insecticidal activity and receptor potency of NMI compared with IMI may be associated with its higher apparent cooperativity facilitating disruption of the AChR.
        
Title: Neuropathy target esterase inhibitors: enantiomeric separation and stereospecificity of 2-substituted-4H-1,3,2-benzodioxaphosphorin 2-oxides Wu SY, Casida JE Ref: Chemical Research in Toxicology, 7:77, 1994 : PubMed
2-Substituted-4H-1,3,2-benzodioxaphosphorin 2-oxides (2-substituted-BDPOs) are known to be potent neuropathy target esterase (NTE) inhibitors (I50s for the racemates of 0.2-3 nM) when the 2-substituents are n-alkyl (C5-C12), N-alkoxy (C7-C10), or p-n-alkylbenzyl (C3 and C4). The list of potent inhibitors (I50s < 3 nM) is expanded by the new n-alkylamino (C9) and n-alkylthio (C5, C7, and C9) analogs reported here. The optimal chain length of the 2-substituent is about 10 atoms in the alkylamino and alkylthio series as in our previous study on alkyl and alkoxy moieties. In contrast, an I50 of 60 nM is reported for o-methylphenoxy-BDPO, the neuropathic metabolite of tri-o-cresyl phosphate (TOCP). In addition to substituent effects, each of these compounds contains two enantiomers of unknown stereospecificity as NTE inhibitors. Separation by chiral HPLC with the CHIRALCEL OC column and hexane-2-propanol eluent gives individual enantiomers of > 98% e.e. and a stereospecificity for NTE inhibition depending on the type and chain length of the 2-substituent; e.g., the ratio for inhibitory potency of the individual enantiomers is 1.7-fold for nonylthio, 1255-fold for nonylamino, and 9-fold for the TOCP metabolite. In comparing enantiomeric pairs of BDPOs with alkyl, alkoxy, alkylamino, alkylthio, benzyl, p-butylbenzyl, o-methylphenoxy, or phenyl as the 2-substituent, the more retained enantiomer in HPLC is always the better NTE inhibitor (in a series of twenty-two pairs) and housefly toxicant (based on two pairs) than the less retained one.(ABSTRACT TRUNCATED AT 250 WORDS)
        
Title: Reactivity and stereospecificity of neuropathy target esterase and alpha-chymotrypsin with 2-substituted-4H-1,3,2-benzodioxaphosphorin 2-oxides Yoshida M, Wu SY, Casida JE Ref: Toxicol Lett, 74:167, 1994 : PubMed
2-Substituted-4H-1,3,2-benzodioxaphosphorin 2-oxides (2-substituted-BDPOs) are of special interest as neuropathy target esterase (NTE) inhibitors because they include not only the neuropathic metabolite of tri-o-cresyl phosphate (the 2-methylphenoxy analog) but also the most potent NTE inhibitors known. These compounds react much faster with NTE than 2 standard inhibitors, O,O-diisopropyl fluorophosphonate (DFP) and mipafox. alpha-Chymotrypsin is similar to NTE in undergoing rapid inhibition by BDPOs which is known to involve phosphorylation followed by aging. NTE and alpha-chymotrypsin were compared for reaction rates with BDPOs varying in the 2-substituent as follows: 4-methyl-, 4-propyl-, and 4-hexylphenoxy; butyl, octyl and dodecyl; (S)- and (R)-butyl. The active site of NTE differs from that of alpha-chymotrypsin in preference for long-chain substituents and in stereospecificity.
        
Title: Neuropathy target esterase inhibitors: 2-alkyl-, 2-alkoxy-, and 2-(aryloxy)-4H-1,3,2-benzodioxaphosphorin 2-oxides Wu SY, Casida JE Ref: Chemical Research in Toxicology, 5:680, 1992 : PubMed
The standard probes used earlier to study neuropathy target esterase (NTE) are N,N'-diisopropyl phosphorofluorodiamidate (mipafox), diisopropyl phosphorofluoridate (DFP), 2-(2-methylphenoxy)-4H-1,3,2-benzodioxaphosphorin 2-oxide (2-CH3C6H4O-BDPO) (the neurotoxic metabolite of tri-o-cresyl phosphate), and dipentyl 2,2-dichlorovinyl phosphate (DDP) with I50s for hen brain enzyme of 7000, 700, 29, and 3 nM, respectively. NTE phosphorylated by DFP and DDP is proposed to undergo alkylation on aging, and this probably also occurs with 2-CH3C6H4O-BDPO. Optimized probes for NTE should meet the following specifications: highest potency achievable; rapid aging perhaps associated with alkylation; preferably a phosphonate so there are only two leaving groups. An attempt was made to achieve these goals in the 4H-1,3,2-benzodioxaphosphorin 2-oxide series by synthesis of 49 analogs systematically varied in the 2-alkyl, 2-alkoxy, or 2-(aryloxy) substituent. Special precautions are required in synthesis of BDPO derivatives because of their potential hazard on human exposure. Thirty of these compounds had NTE I50s lower than 3 nM. Representative high-potency NTE inhibitors in each series are [2-substituent,I50 (nM) for hen and human brain NTE, respectively]: octyl, 0.25 and 0.18; nonyloxy, 0.89 and 0.98; 4-propylphenoxy, 0.82 and 0.77. In comparing these compounds, although the octyl analog is the most potent in vitro NTE inhibitor, the propylphenoxy compound is the most effective in vivo NTE inhibitor and delayed neurotoxicant in hens. These benzodioxaphosphorins are improved probes for investigations on NTE phosphorylation and alkylation in relation to delayed neurotoxicity.
        
Title: Oxidative bioactivation of acetylcholinesterase inhibitors with emphasis on S-alkyl phosphorothiolate pesticides Casida JE Ref: In: Cholinesterases, fundamental and applied aspects : proceedings of the Second International Meeting on Cholinesterases, (Brzin M, Barnard EA, Sket D, Eds) De Gruyter:427, 1984 : PubMed
Title: Profenofos insecticide bioactivation in relation to antidote action and the stereospecificity of acetylcholinesterase inhibition, reactivation, and aging Glickman AH, Wing KD, Casida JE Ref: Toxicology & Applied Pharmacology, 73:16, 1984 : PubMed
Poisoning signs in chicks administered the organophosphorus insecticide profenofos correlated with in vivo inhibition of brain acetylcholinesterase (AChE) activity. Mixtures of atropine with eserine, pyridinium oximes, or the bispyridinium compound SAD-128 increased the LD50 of coadministered profenofos by up to sevenfold in chicks and fourfold in mice. Atropine and the oximes were less effective as profenofos antidotes, indicating that profenofos-inhibited AChE may undergo rapid aging. Brain AChE from chicks poisoned with profenofos was not reactivated by pralidoxime methanesulfonate, although it was from chicks poisoned with the phosphoramidothiolate, methamidophos. Similarly, eel AChE, inhibited in vitro by bioactivated (-)-profenofos, the most toxic isomer, did not reactivate in contrast to that inhibited by methamidophos, nonbioactivated (-)-profenofos, and (+)-profenofos, with or without bioactivation. It appears that the action of eserine and possibly SAD-128 was due to protecting AChE or cholinergic receptors from profenofos or bioactivated profenofos and that oximes may work in the same way rather than as reactivators due to rapid aging of the inhibited AChE.
        
Title: Neural microtubular and lysosomal phenyl valerate esterases and proteases in relation to organophosphate-induced delayed neurotoxicity Seifert J, Casida JE Ref: Comparative Biochemistry & Physiology C Pharmacol Toxicol, 78:271, 1984 : PubMed
At least three forms of phenyl valerate esterases are present in hen brain cytoplasmic microtubules (MT). Thermostability studies reveal two additional forms in brain homogenates of cow, mouse, pig, rabbit and rat. The distribution of these brain esterases is not related to the age of the hens or the susceptibility of the species to organophosphate (OP)-induced delayed neurotoxicity. MT phenyl valerate esterases are distinct enzymes from the MT-associated proteases degrading high-molecular weight MT-associated proteins (hmw MAPs). Hen brain and spinal cord lysosomes on in vitro incubation release phenyl valerate esterase(s) and hmw MAPs-protease(s). OP neurotoxicants act in vitro to stabilize rat but not hen brain lysosomes. In vivo studies with hen brain and spinal cord lysosomes indicate that OP-induced delayed neurotoxicity is not initiated by disruption of lysosomal stability.
        
Title: Stereospecific action of pyrethroid insecticides on the gamma-aminobutyric acid receptor-ionophore complex Lawrence LJ, Casida JE Ref: Science, 221:1399, 1983 : PubMed
The potent alpha-cyano-3-phenoxybenzyl pyrethroids, including cypermethrin, deltamethrin, and fenvalerate, act stereospecifically to inhibit binding to rat brain synaptic membranes of sulfur-35-labeled t-butylbicyclophosphorothionate, a new radioligand for the picrotoxinin binding site. Scatchard analysis indicates that picrotoxinin inhibition of t-butylbicyclophosphorothionate binding is competitive whereas cypermethrin inhibition possibly involves a closely associated site in the gamma-aminobutyric acid receptor-ionophore complex. Studies with 37 pyrethroids reveal an absolute correlation, that is, no false positives or negatives, between mouse intracerebral toxicity and in vitro inhibition: all toxic cyano compounds but none of their nontoxic stereoisomers are inhibitors; cis isomers are more potent than trans isomers as both toxicants and inhibitors; and noncyano pyrethroids are much less potent or are inactive.
        
Title: Analysis and persistence of permethrin, cypermethrin, deltamethrin, and fenvalerate in the fat and brain of treated rats Marei AE, Ruzo LO, Casida JE Ref: Journal of Agricultural and Food Chemistry, 30:558, 1982 : PubMed
Title: Possible role of microtubules and associated proteases in organophosphorus ester-induced delayed neurotoxicity Seifert J, Casida JE Ref: Biochemical Pharmacology, 31:2065, 1982 : PubMed
Organophosphorus delayed neurotoxicants (phenyl saligenin cyclic phosphate and diisopropyl phosphorofluoridate) altered cyclic AMP (cAMP)-dependent phosphorylation and several other processes in brain homogenates and cytoplasmic microtubules. Phenyl saligenin cyclic phosphate slightly stimulated in vitro cAMP-dependent phosphorylation in brain homogenates of three species (rat, mouse and rabbit) that have been reported to be insensitive to delayed neurotoxicity, whereas it slightly decreased this phosphorylation in brain homogenates of three sensitive species (chicken, cow and pig) and in brain microtubules of chicken and pig. The microtubule-associated processes that were moderately inhibited by phenyl saligenin cyclic phosphate in sensitive species were: in vitro [3H]cAMP binding to protein kinase, in vitro assembly when tubulin rings were absent, and cAMP-dependent phosphorylation of microtubule-associated proteins (MAPs) both in vitro and on intracerebral administration of 32Pi. The endogenous proteases that degrade the high molecular weight MAPs were strongly inhibited in vitro by phenyl saligenin cyclic phosphate and diisopropyl phosphorofluoridate. In contrast, treatment of chickens with diisopropyl phosphorofluoridate remarkably decreased the in vitro stability of their brain cytoplasmic high molecular weight MAPs, perhaps by enhancing the MAPs-degrading protease activity. These findings indicate that the MAPs-protease system is a possible target for organophosphorus delayed neurotoxicants.
        
Title: Pyrethrum flowers and pyrethroid insecticides Casida JE Ref: Environmental Health Perspectives, 34:189, 1980 : PubMed
The natural pyrethrins from the daisy-like flower, Tanacetum or Chrysanthemum cinerariifolium, are nonpersistent insecticides of low toxicity to mammals. Synthetic analogs or pyrethroids, evolved from the natural compounds by successive isosteric modifications, are more potent and stable and are the newest important class of crop protection chemicals. They retain many of the favorable properties of the pyrethrins.
        
Title: Organophosphorus and methylcarbamate teratogens: structural requirements for inducing embryonic abnormalities in chickens and kynurenine formamidase inhibition in mouse liver Eto M, Seifert J, Engel JL, Casida JE Ref: Toxicol Appl Pharmacol, 54:20, 1980 : PubMed
Title: S-Chloroallyl thiocarbamate herbicides: mouse hepatic microsomal oxygenase and rat metabolism of cis- and trans-[14C = O]diallate Chen YS, Schuphan I, Casida JE Ref: Journal of Agricultural and Food Chemistry, 27:709, 1979 : PubMed
Title: Phosphorylation, aging and possible alkylation reactions of saligenin cyclic phosphorus esters with alpha-chymotrypsin Toia RF, Casida JE Ref: Biochemical Pharmacology, 28:211, 1979 : PubMed
Title: Thiocarbamate herbicide metabolism: microsomal oxygenase metabolism of EPTC involving mono- and dioxygenation at the sulfur and hydroxylation at each alkyl carbon Chen YS, Casida JE Ref: Journal of Agricultural and Food Chemistry, 26:263, 1978 : PubMed
Title: Relation of yolk sac membrane kynurenine formamidase inhibition to certain teratogenic effects of organophosphorus insecticides and of carbaryl and eserine in chicken embryos Seifert J, Casida JE Ref: Biochemical Pharmacology, 27:2611, 1978 : PubMed
Title: Kynurenine formamidase inhibition as a possible mechanism for certain teratogenic effects of organophosphorus and methylcarbamate insecticides in chicken embryos Moscioni AD, Engel JL, Casida JE Ref: Biochemical Pharmacology, 26:2251, 1977 : PubMed
Title: Metabolism in plants. Fate of C14-carbonyl-labeled aryl methylcarbamate insecticide chemicals in and on bean plants Abdel-Wahab AM, Kuhr RJ, Casida JE Ref: Journal of Agricultural and Food Chemistry, 14:290, 1966 : PubMed
Title: Carbaryl metabolites. Metabolites of carbaryl ( 1-naphthyl methylcarbamate) in mammals and enzymatic systems for their formation Leeling NC, Casida JE Ref: Journal of Agricultural and Food Chemistry, 14:281, 1966 : PubMed
Title: The metabolites of methyl- and dimethvl-carbamate insecticide chemicals as formed by rat liver microsomes Oonnithan ES, Casida JE Ref: Bulletin of Environmental Contamination & Toxicology, 1:59, 1966 : PubMed
Title: Potentiation and neurotoxicity induced by certain organophosphates Casida JE, Baron RL, Eto M, Engel JL Ref: Biochemical Pharmacology, 12:73, 1963 : PubMed
The following types of phosphorus compounds were found to be active in potentiating the toxicity of malathion to mice: triphenyl phosphates and phosphonates containing o- and p-, methyl and ethyl substitutents; certain di-(substituted-phenyl) phenylphosphonates and N-methylphosphoramidates; S,S,S-trialkyl phosphorotrithioites and phosphorotrithioates; and certain saligenin cyclic phosphorus esters. Some compounds in the latter two groups also produced ataxia in hens. Certain of the saligenin cyclic phosphorus esters were as potent in effecting ataxia as the dialkyl phosphorofluoridates, but required much larger doses to produce parasympathomimetic effects. Also considered are the activity of the 112 phosphorus esters investigated for inhibition in vitro of mouse plasma esterases hydrolyzing malathion and propionylcholine, and the stability of the saligenin cyclic phosphorus esters to enzymatic and nonenzymatic hydrolysis."
        
Title: Nonhydrolytic pathway in metabolism of N-methylcarbamate insecticides Dorough HW, Leeling NC, Casida JE Ref: Science, 140:170, 1963 : PubMed
Title: Mammalian enzymes involved in the degradation of 2,2-dichlorovinyl dimethyl phosphate Hodgson E, Casida JE Ref: Journal of Agricultural and Food Chemistry, 10:208, 1962 : PubMed
TRI-O-CRESYL PHOSPHATE (TOCP) is metabolized in vitro and in vivo to form potent esterase inhibitors15. The nature and biological activity of the metabolites were investigated"
        
Title: Stability, toxicity and reaction mechanism with esterases of certain carbamate insecticides Casida JE, Augustinsson KB, Jonsson G Ref: J Econ Entomol, 53:205, 1960 : PubMed
Title: Effects of parathion and malathion separately and jointly upon rat esterases in vivo Seume FW, Casida JE, O'Brien RD Ref: Journal of Agricultural and Food Chemistry, 8:43, 1960 : PubMed
Title: Reaction of plasma albumin with I-naphthyl N-methylcarbamate and certain other esters Casida JE, Augustinsson KB Ref: Biochimica & Biophysica Acta, 36:411, 1959 : PubMed
The oxidative and hydrolytic metabolism of Thimet by plants, insects and mammals were further studied with chromatographic and radiotracer techniques. Bean plants, southern army worms (Prodenia eridania (Cram.)), albino rats, and a cow were utilized. The proportions of Thimet, oxidized derivatives, and hydrolysis products were determined with bean plants which had absorbed Thimet through their roots, with army worms which had fed on these plants, and with the feces of the army worms. Army worms were more efficient than bean plants in vivo in oxidation of the phosphorothioate group of Thimet and in hydrolysis of the oxidation products. With the mammals, the excretory products and tissue residues were investigated. Extreme difficulty was encountered in extraction of the radioactivity from the tissues of the treated rats and cow. The relative insect and mammalian toxicity and stability to hydrolysis by alkali are reported for Thimet and its oxidation products.
        
Title: Metabolism and selectivity of O,O-dimethyl 2,2,2-trichloro-1-hydroxyethyl phosphonate and its acetyl and vinyl derivatives Arthur BW, Casida JE Ref: Journal of Agricultural and Food Chemistry, 5:186, 1957 : PubMed
Title: Comparative enzymology of certain insect acetylesterases in relation to poisoning by organophosphate insecticides Casida JE Ref: Journal of Physiology, 127:20, 1955 : PubMed
Title: Comparative enzymology of certain insect acetylesterases in relation to poisoning by organophosphorus insecticides Casida JE Ref: Biochemical Journal, 60:487, 1955 : PubMed
Title: Mammalian conversion of octamethylpyrophosphoramide to a toxic phosphoramide N-oxide Casida JE, Allen TC, Stahmann MA Ref: Journal of Biological Chemistry, 210:607, 1954 : PubMed
Title: Chemical oxidation of a phosphoramide to a phosphoramide N-oxide anticholinesterase and its subsequent rearrangement Tsuyuki H, Stahmann MA, Casida JE Ref: Biochemical Journal, 59:iv, 1954 : PubMed
Title: Enzymatic and chemical oxidation of dimethylphosphoramides to biologically active dimethylphosphoramide oxides Casida JE, Allen TC, Stahmann MA Ref: Nature, 172:243, 1953 : PubMed