Broadly used in biocatalysis as acyl acceptors or (co)-solvents, short-chain alcohols often cause irreversible loss of enzyme activity. Understanding the mechanisms of inactivation is a necessary step toward the optimization of biocatalytic reactions and the design of enzyme-based sustainable processes. In this work, we explored the functional and structural response of an immobilized enzyme, Novozym 435, exposed to methanol, ethanol, and tert-butanol. N-435 consists of Candida antarctica lipase B (CALB) adsorbed on polymethacrylate beads and finds application in a variety of processes involving the presence of short-chain alcohols. The nature of the N-435 material required the development of an ad hoc method of structural analysis, based on Fourier transform infrared microspectroscopy, which was complemented by catalytic activity assays and by morphological observation by transmission electron microscopy. We found that the inactivation of N-435 is highly dependent on alcohol concentration and occurs through two different mechanisms. Short-chain alcohols induce conformational changes leading to CALB aggregation, which is only partially prevented by immobilization. Moreover, alcohol modifies the texture of the solid support promoting the enzyme release. Overall, knowledge of the molecular mechanisms underlying Novozym 435 inactivation induced by short-chain alcohols promises to overcome the limitations that usually occur during industrial processes. This article is protected by copyright. All rights reserved.
The study of enzymes from extremophiles arouses interest in Protein Science because of the amazing solutions these proteins adopt to cope with extreme conditions. Recently solved, the structure of the psychrophilic acyl aminoacyl peptidase from Sporosarcina psychrophila (SpAAP) pinpoints a mechanism of dimerization unusual for this class of enzymes. The quaternary structure of SpAAP relies on a domain-swapping mechanism involving the N-terminal A1 helix. The A1 helix is conserved among homologous mesophilic and psychrophilic proteins and its deletion causes the formation of a monomeric enzyme, which is inactive and prone to aggregate. Here, we investigate the dimerization mechanism of SpAAP through the analysis of chimeric heterodimers where a protomer lacking the A1 helix combines with a protomer carrying the inactivated catalytic site. Our results indicate that the two active sites are independent, and that a single A1 helix is sufficient to partially recover the quaternary structure and the activity of chimeric heterodimers. Since catalytically competent protomers are unstable and inactive unless they dimerize, SpAAP reveals as an "obligomer" for both structural and functional reasons.
Biocatalysis in mixtures of water and co-solvents represents an opportunity to expand the application of enzymes. However, in the presence of organic solvents, enzymes can undergo reversible inhibition, inactivation, or aggregation. In this work, we studied the effects of three co-solvents (methanol, acetone, and dimethyl sulfoxide - DMSO) on the function and structure of the recombinant Candida antarctica lipase B (rCALB), a widely used enzyme in biotechnological applications. The effects of co-solvents on rCALB were investigated by steady-state kinetics experiments, biophysical assays and by molecular dynamics simulations in the presence and upon incubation with the three co-solvents. Methanol and acetone were found to act as competitive inhibitors of rCALB and to promote its aggregation, whereas DMSO is a non-essential activator of rCALB.
Life in cold environments requires an overall increase in the flexibility of macromolecular and supramolecular structures to allow biological processes to take place at low temperature. Conformational flexibility supports high catalytic rates of enzymes in the cold but in several cases is also a cause of instability. The three-dimensional structure of the psychrophilic acyl aminoacyl peptidase from Sporosarcina psychrophila (SpAAP) reported in this paper highlights adaptive molecular changes resulting in a fine-tuned trade-off between flexibility and stability. In its functional form SpAAP is a dimer, and an increase in flexibility is achieved through loosening of intersubunit hydrophobic interactions. The release of subunits from the quaternary structure is hindered by an 'arm exchange' mechanism, in which a tiny structural element at the N terminus of one subunit inserts into the other subunit. Mutants lacking the 'arm' are monomeric, inactive and highly prone to aggregation. Another feature of SpAAP cold adaptation is the enlargement of the tunnel connecting the exterior of the protein with the active site. Such a wide channel might compensate for the reduced molecular motions occurring in the cold and allow easy and direct access of substrates to the catalytic site, rendering transient movements between domains unnecessary. Thus, cold-adapted SpAAP has developed a molecular strategy unique within this group of proteins: it is able to enhance the flexibility of each functional unit while still preserving sufficient stability. DATABASE: Structural data are available in the Protein Data Bank under the accession number 5L8S.
        
Title: Structural investigation of the cold-adapted acylaminoacyl peptidase from Sporosarcina psychrophila by atomistic simulations and biophysical methods Papaleo E, Parravicini F, Grandori R, De Gioia L, Brocca S Ref: Biochimica & Biophysica Acta, 1844:2203, 2014 : PubMed
Protein structure and dynamics are crucial for protein function. Thus, the study of conformational properties can be very informative for characterizing new proteins and to rationalize how residue substitutions at specific protein sites affect its dynamics, activity and thermal stability. Here, we investigate the structure and dynamics of the recently isolated cold-adapted acylaminoacyl peptidase from Sporosarcina psychrophila (SpAAP) by the integration of simulations, circular dichroism, mass spectrometry and other experimental data. Our study notes traits of cold-adaptation, such as lysine-to-arginine substitutions and a lack of disulphide bridges. Cold-adapted enzymes are generally characterized by a higher number of glycine residues with respect to their warm-adapted counterparts. Conversely, the SpAAP glycine content is lower than that in the warm-adapted variants. Nevertheless, glycine residues are strategically located in proximity to the functional sites in SpAAP, such as the active site and the linker between the two domains.. In particular, G457 reduces the steric hindrance around the nucleophile elbow. Our results suggest a local weakening of the intramolecular interactions in the cold-adapted enzyme. This study offers a basis for the experimental mutagenesis of SpAAP and related enzymes. The approaches employed in this study may also provide a more general framework to characterize new protein structures in the absence of X-ray or NMR data.
Acyl aminoacyl peptidases are two-domain proteins composed by a C-terminal catalytic alpha/beta-hydrolase domain and by an N-terminal beta-propeller domain connected through a structural element that is at the N-terminus in sequence but participates in the 3D structure of the C-domain. We investigated about the structural and functional interplay between the two domains and the bridge structure (in this case a single helix named alpha1-helix) in the cold-adapted enzyme from Sporosarcina psychrophila (SpAAP) using both protein variants in which entire domains were deleted and proteins carrying substitutions in the alpha1-helix. We found that in this enzyme the inter-domain connection dramatically affects the stability of both the whole enzyme and the beta-propeller. The alpha1-helix is required for the stability of the intact protein, as in other enzymes of the same family; however in this psychrophilic enzyme only, it destabilizes the isolated beta-propeller. A single charged residue (E10) in the alpha1-helix plays a major role for the stability of the whole structure. Overall, a strict interaction of the SpAAP domains seems to be mandatory for the preservation of their reciprocal structural integrity and may witness their co-evolution.
Methanol is often employed in biocatalysis with the purpose of increasing substrates solubility or as the acyl acceptor in transesterification reactions, but inhibitory effects are observed in several cases. We have studied the influence of methanol on the catalytic activity and on the conformation of the lipase from Burkholderia glumae, which is reported to be highly methanol tolerant if compared with other lipases. We detected highest activity in the presence of 50-70 % methanol. Under these conditions, however, the enzyme stability is perturbed, leading to gradual protein unfolding and finally to aggregation. These results surmise that, for this lipase, methanol-induced deactivation does not depend on inhibition of catalytic activity but rather on negative effects on the conformational stability of the catalyst.
        
Title: Secondary structure, conformational stability and glycosylation of a recombinant Candida rugosa lipase studied by Fourier-transform infrared spectroscopy Natalello A, Ami D, Brocca S, Lotti Marina, Doglia SM Ref: Biochemical Journal, 385:511, 2005 : PubMed
The secondary structure of lipase 1 from Candida rugosa, a model system for large monomeric enzymes, has been studied by FTIR (Fourier-transform infrared) spectroscopy in water and 2H2O. The secondary structure content, determined by the analysis of the amide I band absorption through second derivative and curve fitting procedures, is in agreement with that estimated by X-ray data and predicts, in addition, the existence of two classes of alpha-helices. We have also investigated the enzyme stability and aggregation at high temperature by following the protein unfolding. The thermal stability determined by FTIR is in excellent agreement with the temperature dependence of the lipase activity. Furthermore, new insights on the glycosylation of the recombinant protein produced in Pichia pastoris and on its heterogeneity related to different fermentation batches were obtained by the analysis of the IR absorption in the 1200-900 cm(-1) carbohydrate region. A drastic reduction of the intensity of this band was found after enzymic deglycosylation of the protein. To confirm that the FTIR absorption in the 1200-900 cm(-1) region depends on the carbohydrate content and glycoform distribution, we performed an MS analysis of the protein sugar moieties. Glycosidic structures of the high mannose type were found, with mannoses ranging from 8 to 25 residues.
The activity and enantioselectivity of lipase 1 from Candida rugosa and of a chimera enzyme obtained by replacing the lid of isoform 1 with the lid of isoform 3 were compared in organic solvents. The alcoholysis of chloro ethyl 2-hydroxy hexanoate with methanol and of vinyl acetate with 6-methyl-5-hepten-2-ol were used as model reactions in different reaction conditions. The chimera enzyme was less active and enantioselective than the wildtype in all the conditions tested. A rationale for such decreases could be that the chimera lipase has a lower proportion of enzyme molecules in the open form. This might lead to a hindered access to the enzyme active site, thus affecting the catalytic activity.
The fungus Candida rugosa produces multiple lipase isoenzymes (CRLs) with distinct differences in substrate specificity, in particular with regard to selectivity toward the fatty acyl chain length. Moreover, isoform CRL3 displays high activity towards cholesterol esters. Lipase isoenzymes share over 80% sequence identity but diverge in the sequence of the lid, a mobile loop that modulates access to the active site. In the active enzyme conformation, the open lid participates in the substrate-binding site and contributes to substrate recognition. To address the role of the lid in CRL activity and specificity, we substituted the lid sequences from isoenzymes CRL3 and CRL4 in recombinant rCRL1, thus obtaining enzymes differing only in this stretch of residues. Swapping the CRL3 lid was sufficient to confer to CRL1 cholesterol esterase activity. On the other hand, a specific shift in the chain-length specificity was not observed. Chimeric proteins displayed different sensitivity to detergents in the reaction medium.
In a batch cultivation of Pichia pastoris expressing Candida rugosa lipase 1 (CRL1), secretion of 200 microg lipase ml(-1) of culture was achieved in sorbitol-based medium. However, a large amount of recombinant protein was retained intracellularly throughout the fermentation, pointing to the transport step as a major bottleneck. Therefore a translational fusion with the green fluorescent protein (GFP) was constructed that was expressed and transported similarly to the native lipase and retained catalytic activity. This analytical tool enables a rapid monitoring of product localization and amount, based on GFP-associated fluorescence.
        
Title: Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity Schmitt J, Brocca S, Schmid RD, Pleiss J Ref: Protein Engineering, 15:595, 2002 : PubMed
The molecular basis of chain length specificity of Candida rugosa lipase 1 was investigated by molecular modeling and site-directed mutagenesis. The synthetic lip1 gene and the lipase mutants were expressed in Pichia pastoris and assayed for their chain length specificity in single substrate assays using triglycerides as well as in a competitive substrate assay using a randomized oil. Mutation of amino acids at different locations inside the tunnel (P246F, L413F, L410W, L410F/S300E, L410F/S365L) resulted in mutants with a different chain length specificity. Mutants P246F and L413F have a strong preference for short chain lengths whereas substrates longer than C10 are hardly hydrolyzed. Increasing the bulkiness of the amino acid at position 410 led to mutants that show a strong discrimination of chain lengths longer than C14. The results obtained can be explained by a simple mechanical model: the activity for a fatty acid sharply decreases as it becomes long enough to reach the mutated site. In contrast, a mutation at the entrance of the tunnel (L304F) has a strong impact on C4 and C6 substrates. This mutant is nevertheless capable of hydrolyzing chain lengths longer than C8.
Sequence analysis of Candida rugosa lipase 1 (LIP1) predicts the presence of three N-linked glycosylation sites at asparagine 291, 314, 351. To investigate the relevance of sugar chains in the activation and stabilization of LIP1, we directed site mutagenesis to replace the above mentioned asparagine with glutamine residues. Comparison of the activity of mutants with that of the wild-type (wt) lipase indicates that both 314 and 351 Asn to Gln substitutions influence, although at a different extent, the enzyme activity both in hydrolysis and esterification reactions, but they do not alter the enzyme water activity profiles in organic solvents or temperature stability. Introduction of Gln to replace Asn351 is likely to disrupt a stabilizing interaction between the sugar chain and residues of the inner side of the lid in the enzyme active conformation. The effect of deglycosylation at position 314 is more difficult to explain and might suggest a more general role of the sugar moiety for the structural stability of lipase 1. Conversely, Asn291Gln substitution does not affect the lipolytic or the esterase activity of the mutant that behaves essentially as the wt enzyme. This observation supports the hypothesis that changes in activity of Asn314Gln and Asn351Gln mutants are specifically due to deglycosylation.
The dimorphic yeast Candida rugosa has an unusual codon usage that hampers the functional expression of genes derived from this yeast in a conventional heterologous host. Commercial samples of C. rugosa lipase (CRL) are widely used in industry, but contain several different isoforms encoded by the lip gene family, among which the isoform encoded by the gene lip1 is the most prominent. In a first laborious attempt, the lip1 gene was systematically modified by site-directed mutagenesis to gain functional expression in Saccharomyces cerevisiae. As alternative approach, the gene (1647 bp) was completely synthesized with an optimized nucleotide sequence in terms of heterologous expression in yeast and simplified genetic manipulation. The synthetic gene was functionally expressed in both hosts S. cerevisiae and Pichia pastoris, and the effect of heterologous leader sequences on expression and secretion was investigated. In particular, using P. pastoris cells, the synthetic gene was functionally overexpressed, allowing for the first time to produce recombinant Lipl of high purity at a level of 150 U/mL culture medium. The physicochemical and catalytic properties of the recombinant lipase were compared with those of a commercial, nonrecombinant C. rugosa lipase preparation containing lipase isoforms.
The fungus Candida rugosa secretes an extracellular lipase whose production is induced by the addition of fatty acids to the culture broth. This lipase is indeed composed by several protein isoforms partly differing in their catalytic properties. Synthesis and secretion of lipase proteins by C. rugosa cells were studied in culture media containing either glucose or oleic acid as the carbon source. It was shown that, according to their regulation, lipase-encoding genes might be grouped in two classes, one of which is constitutively expressed and the other is induced by fatty acids. The synthesis of inducible enzymes is inhibited at the level of transcription by the addition of glucose and, conversely, oleic acid appears to hinder the synthesis of the constitutive lipase. Growth conditions supporting high level expression both in batch and in continuous culture give rise to the intracellular accumulation of enzyme, possibly due to the existence of a rate-limiting step in the transport of the newly synthesized protein. These results suggest the possibility to develop fermentation processes aimed at the control of the enzyme composition.
The fungus C. rugosa produces lipase isoenzymes (CRLs) homologous to the Geotrichum candidum and Yarrowia lipolytica lipases to which they share ca. 40 and 30% sequence identity, with a domain of sequence conservation at the N-terminal half of the protein. CRL proteins have high sequence homology but are not identical in their catalytic activity, therefore calling for the resolution of isoforms via heterologous expression. The non-conventional use of a serine codon in several Candida species frustrates overexpression in the currently available host systems. The LIP1 gene, coding for the major CRL form, was therefore expressed in C. maltosa, a related fungus with the same codon usage as C. rugosa. A recombinant lipase was produced and secreted in an active form in the culture medium upon engineering the 5' and 3' ends of the gene.
In the yeast Candida rugosa the lipase isozymes are encoded by a family of genes, five of which have been cloned and sequenced in our laboratory. In this paper we report on the identification and preliminary characterization of two new related sequences, thus extending this multigene family to seven members. The total DNA content of Candida cells was estimated by laser flow-cytometry at about 20 Mb. Eight chromosomes with sizes ranging between 100 kb and 2.1 Mb, as determined by comparison with S. cerevisiae chromosomal bands, were resolved by pulsed-field gel electrophoresis. The lipase-encoding genes were localized on chromosome I, therefore suggesting that they have originated through multiple duplication events of an ancestral gene.
Several fungi secrete lipase isozymes differing in biochemical properties and in some cases in substrate specificity. In the yeast Candida rugosa, a family of related genes encodes for multiple lipase proteins, highly homologous in sequence but partially different in the regions interacting with the substrate molecule. Analysis of these substitutions performed on the basis of multiple alignments and using a 3-D model of the enzyme, allows identification of a restricted number of amino acids possibly involved in substrate specificity of Candida lipases.
Lipases (Lip) hydrolyze triglycerides into fatty acids and glycerol. Lip produced by the yeast Candida cylindracea are encoded by multiple genomic sequences. We report the molecular cloning and characterization of three genes from this family. They encode putative mature 57-kDa proteins of 534 amino acids (aa). To date, five Lip-encoding genomic sequences from C. cylindracea have been characterized in our laboratory. The five deduced aa sequences share an overall homology of 80%. These sequences have been aligned with each other and with those of homologous enzymes, the Lip from the mould Geotrichum candidum and the acetylcholinesterase from Torpedo californica, whose three-dimensional structures have been solved by X-ray analysis. The C. cylindracea Lip appear to have a structural organization similar to that described for both enzymes.