Fluoride is one of the abundant elements found in the Earth's crust and is a global environmental issue. The present work aimed to find the impact of chronic consumption of fluoride contained groundwater on human subjects. Five hundred and twelve volunteers from different areas of Pakistan were recruited. Cholinergic status, acetylcholinesterase and butyrylcholinesterase gene SNPs and pro-inflammatory cytokines were examined. Association analysis, regression and other standard statistical analyses were performed. Physical examination of the fluoride endemic areas' participants revealed the symptoms of dental and skeletal fluorosis. Cholinergic enzymes (AChE and BChE) were significantly increased among different exposure groups. ACHE gene 3'-UTR variant and BCHE K-variant showed a significant association with risk of fluorosis. Pro-inflammatory cytokines (TNF-alpha, IL-1beta and IL-6) were found to be increased and have a significant correlation in response to fluoride exposure and cholinergic enzymes. The study concludes that chronic consumption of high fluoride-contained water is a risk factor for developing low-grade systemic inflammation through the cholinergic pathway and the studied cholinergic gene SNPs were identified to be associated with the risk of flurosis.
        
Title: Diclofenac derivatives as concomitant inhibitors of cholinesterase, monoamine oxidase, cyclooxygenase-2 and 5-lipoxygenase for the treatment of Alzheimer's disease: synthesis, pharmacology, toxicity and docking studies Javed MA, Bibi S, Jan MS, Ikram M, Zaidi A, Farooq U, Sadiq A, Rashid U Ref: RSC Adv, 12:22503, 2022 : PubMed
Targeting concomitantly cholinesterase (ChEs) and monoamine oxidases (MAO-A and MAO-B) is a key strategy to treat multifactorial Alzheimer's disease (AD). Moreover, it is reported that the expression of cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) is increased significantly in the brain of AD patients. Using the triazole of diclofenac 12 as a lead compound, we synthesized a variety of analogs as multipotent inhibitors concomitantly targeting COX-2, 5-LOX, AChE, BChE, MAO-A and MAO-B. A number of compounds showed excellent in vitro inhibition of the target biological macromolecules in nanomolar concentration. Compound 39 emerged as the most potent multitarget ligand with IC(50) values of 0.03 microM, 0.91 microM, 0.61 microM, 0.01 microM 0.60 microM and 0.98 microM towards AChE, BChE, MAO-A, MAO-B, COX-2 and 5-LOX respectively. All the biologically active compounds were found to be non-neurotoxic and blood-brain barrier penetrant by using PAMPA assay. In a reversibility assay, all the studied active compounds showed reversibility and thus were found to be devoid of side effects. MTT assay results on neuroblastoma SH-SY5Y cells showed that the tested compounds were non-neurotoxic. An in vivo acute toxicity study showed the safety of the synthesized compounds up to a 2000 mg kg(-1) dose. In docking studies three-dimensional construction and interaction with key residues of all the studied biological macromolecules helped us to explain the experimental results.
A series of new heterocycles (4-18) was synthesized by the structural modification of benzimidazole-2-thiol (BT, 2-MBI). The structures of the synthesized compounds were confirmed with the help of high-resolution mass spectrometry (HRMS) and (1) HNMR spectroscopy. High inhibitions of the oxidants such as ABTS and DPPH were observed for compounds 9 [IC(50) (s) = 167.4 microM (ABTS), 139.5 microM (DPPH)], 10 [IC(50) (s) = 186.5 microM (ABTS), 155.4 microM (DPPH)], 11 [IC(50) (s) = 286.1 microM (ABTS), 189.1 microM (DPPH)], 12 [IC(50) (s) = 310.8 microM (ABTS), 162.2 microM (DPPH)], 14 [IC(50) (s) = 281.3 microM (ABTS), 205.7 microM (DPPH)], 15 [IC(50) (s) = 284.1 microM (ABTS), 177.3 microM (DPPH)], and 16 [IC(50) (s) = 344.7 microM (ABTS), 270.2 microM (DPPH)] as compared with Ascorbic acid [IC(50) (s) = 340.9 microM (ABTS), 164.3 microM (DPPH)]. The anti-Alzheimer's activity was performed in vitro against cholinesterase enzymes (AChE, BChE). Compound 11 was able to show significant inhibitions [IC(50) (s) = 121.2 microM (AChE), 38.3 microM (BChE)] as against that of galantamine [IC(50) (s) = 139.4 microM (AChE), 40.3 microM (BChE)]. Compound 14 was found as a very good inhibitor of butyrylcholinesterase (IC(50) = 35.4 microM) as compared with standard galantamine. Molecular docking was further performed to investigate the mechanism of anticholinesterase activity.
Cucurbita pepo is used as a vegetable in Pakistan and its seeds are also rich in tocopherol. Data showed the pivotal role of tocopherol in the treatment of Parkinson's disease (PD). The current study was designed to probe into the antiparkinson activity of methanolic extract of C. pepo (MECP) seeds in the haloperidol-induced Parkinson rat model. Behavioral studies showed improvement in motor functions. The increase in catalase, superoxide dismutase, glutathione levels whereas the decreases in the malondialdehyde and nitrite levels were noted in a dose-dependent manner. Acetylcholine-esterase (AchE) activity was increased. Molecular docking results revealed significant binding interaction of selected phytoconstituents within an active site of target protein AchE (PDB ID: 4EY7). Furthermore, alpha-synuclein was up regulated with down regulation of TNF-alpha and IL-1beta in the qRT-PCR study. Subsequently, ADMET results on the basis of structure to activity predictions in terms of pharmacokinetics and toxicity estimations show that selected phytochemicals exhibited moderately acceptable properties. These properties add knowledge towards the structural features which could improve the bioavailability of selected phytochemicals before moving towards the initial phase of the drug development. Our integrated drug discovery scheme concluded that C. pepo seeds could ameliorate symptoms of PD and may prove a lead remedy for the treatment of PD.
Alzheimer's disease (AD) is clinically characterized as memory deficits, altered behavior and impaired cognitive functions. The most important risk factor for AD is aging and mounting. Evidences suggested in different studies that traditionally used plants in Asia, China, and Europe significantly affect aging and AD involved neurodegeneration pathways. Research into ethnobotanicals for impaired memory and cognition has been burgeoned in last decades. The inclusion and exclusion criteria for the plant selection were based on reputed herbs recommended for treatment of neurological disorders and their scientific validation to cure neurodegenerative disorders. A range of traditional plants imparts effects via acetylcholinesterase activity, beta-amyloid peptide formation in plaques, neurotrophic factors and through antioxidant activity. On one side preclinical investigations identified promising drug candidates for AD, on the other side, clinical evidences are still pending. Presently, according to WHO, around more than 80% world population relay on natural remedies to cure their health related issues. Plants contain rich source of primary and secondary metabolites for improving health problems. Pharmaceutical industry is facing intriguing challenges like elevated cost and unendurable risk management due to the high burden of neurodegenerative disorders. A significant shift of drug discovery is being witnessed from synthetic moieties to herbal formulation.