Acetylcholinesterase (AChE) plays a crucial physiological role in termination of impulse transmission at cholinergic synapses through rapid hydrolysis of acetylcholine. In addition, it was implicated in amyloid plaque formation, a hallmark of Alzheimer's disease (AD), and most of the drugs used in AD treatment are AChE inhibitors. Thus ACHE is an obvious candidate gene for pharmacogenetic study of AD treatment. However, AChE is a highly conserved molecule, and only a few naturally occurring genetic polymorphisms have been reported in the human gene. The goals of this study were to make a systematic effort to identify natural single nucleotide polymorphisms (SNPs) in the human ACHE gene, and to reveal their population specific architecture. To this end, the genomic coding sequences for AChE of 96 unrelated control individuals from three distinct ethnic groups, African Americans, Ashkenazi Jews and Israeli Arabs, were analyzed. Thirteen ACHE SNPs were identified, ten of which are newly described, and five of which should produce amino-acid substitutions (Arg34Gln, Gly57Arg, Glu344Gly, His353Asn and Pro592Arg). Population frequencies of 11 of the 13 SNPs were established in four different populations, African Americans, Ashkenazi Jews, Sephardic Jews and Israeli Arabs; 17 haplotypes and 5 ethno-specific alleles were identified, and a cladogram of ACHE haplotypes was constructed. Among the SNPs resulting in an amino-acid substitution, three are within the mature protein, mapping on its external surface; they are thus unlikely to affect its catalytic properties, yet could have antigenic consequences or affect putative protein-protein interactions. Furthermore, the newly identified SNPs open the door to a study of the possible association of AChE with deleterious phenotypes - such as adverse drug responses to AChE inhibitors employed in treatment of AD patients and hypersensitivity to pesticides.
Human nicotinic acetylcholine receptor (nAChR) polymorphisms occur in different ethnic populations and may result in differences in nAChR ion channel properties. We have identified four nAChR beta 4 subunit (beta4) nucleotide variants: 392C-->T, 526C-->T, 538A-->G, and 1519A-->G. Their corresponding amino acid substitutions are: Thr to Ile at codon 91 (T91I), Arg to Trp at codon 136 (R136W), Ser to Gly at codon 140 (S140G), and Met to Val at codon 467 (M467V), respectively. The nAChR ion channel properties of these variants were studied and compared with the more-common (wild-type) allele as wild-types. The nAChRs (alpha4beta4 channels) were expressed heterologously in Xenopus oocytes and studied using the two-electrode voltage clamp technique to reveal functional differences between the wild-type and the variants. The receptors containing the R136W and M467V mutations (or variants) had a higher sensitivity to acetylcholine and lower EC50 than the wild-type. The T91I mutation had lower sensitivity to acetylcholine and the EC50 was larger than in wild-type nAChRs. The S140G mutation had a dose-response relationship that was similar to the wild-type. The T91I, R136W, and M467V mutations (or variants) also showed a slightly greater degree of steady-state desensitization than the wild-type in response to a 30-min exposure to one tenth of their EC50. The present results demonstrate that human beta4 nAChR DNA polymorphisms result in functional changes, and suggest that certain individuals with those variants may be more or less sensitive to cholinergic drugs or to dysfunctions associated with nicotinic cholinergic systems.
Acetylcholinesterase (AChE) plays a crucial physiological role in termination of impulse transmission at cholinergic synapses through rapid hydrolysis of acetylcholine. It is a highly conserved molecule, and only a few naturally occurring genetic polymorphisms have been reported in the human gene. The goal of the present study was to make a systematic effort to identify natural single nucleotide polymorphisms (SNPs) in the human ACHE gene. To this end, the genomic coding sequences for acetylcholinesterase of 96 unrelated control individuals from three distinct ethnic groups were analyzed. A total of 13 ACHE SNPs were identified, 10 of which are newly described, and five that should produce amino acid substitutions [c.101G>A (p.Arg34Gln), c.169G>A (p.Gly57Arg), c.1031A>G (p.Glu344Gly), c.1057C>A (p.His353Asn), and c.1775C>G (p.Pro592Arg)]. Population frequencies of 11 of the 13 SNPs were established in four different populations: African Americans, Ashkenazi Jews, Sephardic Jews, and Israeli Arabs; 15 haplotypes and five ethnospecific alleles were identified. The low number of SNPs identified until now in the ACHE gene is ascribed to technical hurdles arising from the high GC content and the presence of numerous repeat sequences, and does not reflect its intrinsic heterozygosity. Among the SNPs resulting in an amino acid substitution, three are within the mature protein, mapping on its external surface: they are thus unlikely to affect its catalytic properties, yet could have antigenic consequences or affect putative protein-protein interactions. Furthermore, the newly identified SNPs open the door to a study of the possible association of AChE with deleterious phenotypes-such as adverse drug responses to AChE inhibitors employed in treatment of Alzheimer patients and hypersensitivity to pesticides.
The biological mechanisms involved in initiating, coordinating, and ultimately terminating cell-cell adhesion in the stratified epithelium are not well understood at present. This study was designed to elucidate the roles of the muscarinic M3, the nicotinic alpha3, and the mixed muscarinic-nicotinic alpha9 acetylcholine receptors in physiologic control of keratinocyte adhesion. Both muscarinic and nicotinic antagonists caused keratinocyte detachment and reversibly increased the permeability of keratinocyte monolayers, indicative of the involvement of both muscarinic and nicotinic pathways in the cholinergic control of keratinocyte adhesion. Since phosphorylation of adhesion proteins plays an important role in rapid assembly and disassembly of intercellular junctions, we measured muscarinic and nicotinic effects on phosphorylation of keratinocyte adhesion molecules. The phosphorylation levels of E-cadherin, beta-catenin, and gamma-catenin increased following pharmacological blockage of muscarinic receptors. Long-term blocking of alpha3, alpha9, and M3 receptor signaling pathways with antisense oligonucleotides resulted in cell-cell detachment and changes in the expression levels of E-cadherin, beta-catenin, and gamma-catenin in cultured human keratinocytes. Simultaneous inhibition of several receptor subtypes with a mixture of antisense oligonucleotides produced intensified abnormalities with cell adhesion. Moreover, altered cell-cell adhesion was found in the stratified epithelium of alpha3, alpha9, and M3 receptor knockout mice. Keratinocytes from these mice exhibited abnormal expression of adhesion molecules at both the protein and the mRNA levels. Thus, our data indicate that the alpha3, alpha9, and M3 acetylcholine receptors play key roles in regulating in a synergistic mode keratinocyte adhesion, most probably by modulating cadherin and catenin levels and activities. These findings may aid in the development of novel methods useful for the treatment of skin adhesion diseases and tumor metastasis.
Non-neuronal nicotinic acetylcholine receptors (nAChRs) are abundantly expressed in skin and their function remains to be elucidated. Herein, we report that cutaneous alpha7 nAChR plays a role in the physiological control of cutaneous homeostasis. We studied in vitro effects of functional inactivation of alpha7 receptor on the expression of apoptosis regulators in keratinocytes (KC) lacking alpha7 nAChR, and extracellular matrix regulators in the skin of alpha7 knockout (KO) mice. Elimination of the alpha7 component of nicotinergic signaling in KC decreased relative amounts of the pro-apoptotic Bad and Bax at both the mRNA and the protein levels, suggesting that alpha7 nAChR is coupled to stimulation of keratinocyte apoptosis. The skin of alpha7 KO mice featured decreased amounts of the extracellular matrix proteins collagen 1alpha1 and elastin as well as the metalloproteinase-1. Taken together, these results suggest an important role for alpha7 nAChR in mediating plethoric effects of non-neuronal acetylcholine on cutaneous homeostasis.
Smoking is associated with aberrant cutaneous tissue remodeling, such as precocious skin aging and impaired wound healing. The mechanism is not fully understood. Dermal fibroblasts (DF) are the primary cellular component of the dermis and may provide a target for pathobiologic effects of tobacco products. The purpose of this study was to characterize a mechanism of nicotine (Nic) effects on the growth and tissue remodeling function of DF. We hypothesized that the effects of Nic on DF result from its binding to specific nicotinic acetylcholine receptors (nAChRs) expressed by these cells and that downstream signaling from the receptors alters normal cell functioning, leading to changes in skin homeostasis. Using RT-PCR and Western blotting, we found that a 24-hour exposure of human DF to 10 micro M Nic causes a 1.9- to 28-fold increase of the mRNA and protein levels of the cell cycle regulators p21, cyclin D1, Ki-67, and PCNA and a 1.7- to 2-fold increase of the apoptosis regulators Bcl-2 and caspase 3. Nic exposure also up-regulated expression of the dermal matrix proteins collagen type Ialpha1 and elastin as well as matrix metalloproteinase-1. Mecamylamine (Mec), the specific antagonist of nAChRs, abolished Nic-induced alterations, indicating that they resulted from a pharmacologic stimulation of nAChRs expressed by DF. To establish the relevance of these findings to a specific nicotinergic pathway, we studied human DF transfected with anti-alpha3 antisense oligonucleotides and murine DF from alpha3 nAChR knockout mice. In both cases, lack of alpha3 was associated with alterations in fibroblast growth and function that were opposite to those observed in DF treated with Nic, suggesting that the nicotinic effects on DF were mostly mediated by alpha3 nAChR. In addition to alpha3, the nAChR subunits detected in human DF were alpha5, alpha7, beta2, and beta4. The exposure of DF to Nic altered the relative amounts of each of these subunits, leading to reciprocal changes in [(3)H]epibatidine-binding kinetics. Thus, some of the pathobiologic effects of tobacco products on extracellular matrix turnover in the skin may stem from Nic-induced alterations in the physiologic control of the unfolding of the genetically determined program of growth and the tissue remodeling function of DF as well as alterations in the structure and function of fibroblast nAChRs.
Several ganglionic nicotinic acetylcholine receptor (nAChR) types are abundantly expressed in nonneuronal locations, but their functions remain unknown. We found that keratinocyte alpha7 nAChR controls homeostasis and terminal differentiation of epidermal keratinocytes required for formation of the skin barrier. The effects of functional inactivation of alpha7 nAChR on keratinocyte cell cycle progression, differentiation, and apoptosis were studied in cell monolayers treated with alpha-bungarotoxin or antisense oligonucleotides and in the skin of Acra7 homozygous mice lacking alpha7 nAChR channels. Elimination of the alpha7 signaling pathway blocked nicotine-induced influx of 45Ca2+ and also inhibited terminal differentiation of these cells at the transcriptional and/or translational level. On the other hand, inhibition of the alpha7 nAChR pathway favored cell cycle progression. In the epidermis of alpha7-/- mice, the abnormalities in keratinocyte gene expression were associated with phenotypic changes characteristic of delayed epidermal turnover. The lack of alpha7 was associated with up-regulated expression of the alpha3 containing nAChR channels that lack alpha5 subunit, and both homomeric alpha9- and heteromeric alpha9alpha10-made nAChRs. Thus, this study demonstrates that ACh signaling through alpha7 nAChR channels controls late stages of keratinocyte development in the epidermis by regulating expression of the cell cycle progression, apoptosis, and terminal differentiation genes and that these effects are mediated, at least in part, by alterations in transmembrane Ca2+ influx.