Enzymatic degradation and recycling can reduce the environmental impact of plastics. Despite decades of research, no enzymes for the efficient hydrolysis of polyurethanes have been reported. Whereas the hydrolysis of the ester bonds in polyester-polyurethanes by cutinases is known, the urethane bonds in polyether-polyurethanes have remained inaccessible to biocatalytic hydrolysis. Here we report the discovery of urethanases from a metagenome library constructed from soil that had been exposed to polyurethane waste for many years. We then demonstrate the use of a urethanase in a chemoenzymatic process for polyurethane foam recycling. The urethanase hydrolyses low molecular weight dicarbamates resulting from chemical glycolysis of polyether-polyurethane foam, making this strategy broadly applicable to diverse polyether-polyurethane wastes.
Due to the promise of more sustainable recycling of plastics through biocatalytic degradation, the search for and engineering of polyester hydrolases have become a thriving field of research. Furthermore, among other methods, halo formation assays have become popular for the detection of polyester-hydrolase activity. However, established halo-formation assays are limited in their ability to screen for thermostable enzymes, which are particularly important for efficient plastic degradation. The incubation of screening plates at temperatures above 50 degreesC leads to cell lysis and death. Therefore, equivalent master plates are commonly required to maintain and identify the active strains found on the screening plates. This replica plating procedure necessitates 20- to 60-fold more plates than our method, assuming the screened library is transferred to 384-well microtiter plates or 96-well microtiter plates, respectively, to organize the colonies in a retraceable manner, thus significantly lowering throughput. Here, we describe a halo formation assay that is designed to screen thermostable polyesterases independent of master plates and colony replication, thereby markedly reducing the workload and increasing the throughput.
Polyethylene terephthalate (PET) is a mass-produced petroleum-based synthetic polymer. Enzymatic PET degradation using, for example, Ideonella sakaiensis PETase (IsPETase) can be a more environmentally friendly and energy-saving alternative to the chemical recycling of PET. However, IsPETase is a mesophilic enzyme with an optimal reaction temperature lower than the glass transition temperature (T (g)) of PET, where the amorphous polymers can be readily accessed for enzymatic breakdown. In this study, we used error-prone PCR to generate a mutant library based on a thermostable triple mutant (TM) of IsPETase. The library was screened against the commercially available polyester-polyurethane Impranil DLN W 50 for more thermostable IsPETase variants, yielding four variants with higher melting points. The most promising IsPETaseTM(K95N/F201I) variant had a 5.0 degreesC higher melting point than IsPETaseTM. Although this variant showed a slightly lower activity on PET at lower incubation temperatures, its increased thermostability makes it a more active PET hydrolase at higher reaction temperatures up to 60 degreesC. Several other variants were compared and combined with selected previously published IsPETase mutants in terms of thermostability and hydrolytic activity against PET nanoparticles and amorphous PET films. Our findings indicate that thermostability is one of the most important characteristics of an effective PET hydrolase.
Thermophilic polyester hydrolases (PES-H) have recently enabled biocatalytic recycling of the mass-produced synthetic polyester polyethylene terephthalate (PET), which has found widespread use in the packaging and textile industries. The growing demand for efficient PET hydrolases prompted us to solve high-resolution crystal structures of two metagenome-derived enzymes (PES-H1 and PES-H2) and notably also in complex with various PET substrate analogues. Structural analyses and computational modeling using molecular dynamics simulations provided an understanding of how product inhibition and multiple substrate binding modes influence key mechanistic steps of enzymatic PET hydrolysis. Key residues involved in substratebinding and those identified previously as mutational hotspots in homologous enzymes were subjected to mutagenesis. At 72 C, the L92F/Q94Y variant of PES-H1 exhibited 2.3-fold and 3.4-fold improved hydrolytic activity against amorphous PET films and pretreated real-world PET waste, respectively. The R204C/S250C variant of PES-H1 had a 6.4 C higher melting temperature than the wild-type enzyme but retained similar hydrolytic activity. Under optimal reaction conditions, the L92F/Q94Y variant of PES-H1 hydrolyzed low-crystallinity PET materials 2.2-fold more efficiently than LCC ICCG, which was previously the most active PET hydrolase reported in the literature. This property makes the L92F/ Q94Y variant of PES-H1 a good candidate for future applications in industrial plastic r"cycling processes.
Polyethylene terephthalate (PET) is the most widespread synthetic polyester, having been utilized in textile fibers and packaging materials for beverages and food, contributing considerably to the global solid waste stream and environmental plastic pollution. While enzymatic PET recycling and upcycling have recently emerged as viable disposal methods for a circular plastic economy, only a handful of benchmark enzymes have been thoroughly described and subjected to protein engineering for improved properties over the last 16 years. By analyzing the specific material properties of PET and the reaction mechanisms in the context of interfacial biocatalysis, this Perspective identifies several limitations in current enzymatic PET degradation approaches. Unbalanced enzyme-substrate interactions, limited thermostability, and low catalytic efficiency at elevated reaction temperatures, and inhibition caused by oligomeric degradation intermediates still hamper industrial applications that require high catalytic efficiency. To overcome these limitations, successful protein engineering studies using innovative experimental and computational approaches have been published extensively in recent years in this thriving research field and are summarized and discussed in detail here. The acquired knowledge and experience will be applied in the near future to address plastic waste contributed by other mass-produced polymer types (e.g., polyamides and polyurethanes) that should also be properly disposed by biotechnological approaches.
A major challenge for the enzymatic synthesis of sugar esters is the low solubility of sugars in anhydrous, often toxic, organic solvents. We overcame this limitation by using acyltransferases for efficient acetylation of sugars in water. Selective 6-O-acetylation of glucose, maltose, and maltotriose with conversions of up to 78% was achieved within 15 min using engineered acyltransferases (4 microM). Moreover, we identified EstA as a promiscuous acyltransferase preferentially acetylating sugars instead of hydrophobic acyl acceptors. This expands the applicability of promiscuous acyltransferases to sugar modifications and contributes to the understanding of how to adapt acyltransferases to hydrophilic substrates.
Promiscuous hydrolases/acyltransferases have attracted attention for their ability to efficiently catalyze selective transacylation reactions in water to produce esters, thioesters, amides, carbonates, and carbamates. Promiscuous hydrolases/acyltransferases can be implemented into aqueous enzyme cascades and are ideal biocatalysts for the acylation of hydrophilic substrates that are barely soluble in dry organic solvents. This activity was thought to be rare, and recent research has focused on just a small number of accidentally identified promiscuous hydrolases/acyltransferases. High-throughput screening for acyltransferases and an in silico sequence-based method for prediction of acyltransferase activity provided access to many efficient promiscuous hydrolases/acyltransferases, thereby demonstrating that promiscuous acyltransferase activity is rather common in hydrolases. These synthetically valuable enzymes could further be enhanced by protein engineering. This Perspective aims to demonstrate the synthetic potential of these enzymes and raise awareness of the frequency of this activity.
Promiscuous acyltransferase activity is the ability of certain hydrolases to preferentially catalyze acyl transfer over hydrolysis, even in bulk water. However, poor enantioselectivity, low transfer efficiency, significant product hydrolysis, and limited substrate scope represent considerable drawbacks for their application. By activity-based screening of several hydrolases, we identified the family VIII carboxylesterase, EstCE1, as an unprecedentedly efficient acyltransferase. EstCE1 catalyzes the irreversible amidation and carbamoylation of amines in water, which enabled the synthesis of the drug moclobemide from methyl 4-chlorobenzoate and 4-(2-aminoethyl)morpholine (ca. 20% conversion). We solved the crystal structure of EstCE1 and detailed structure-function analysis revealed a three-amino acid motif important for promiscuous acyltransferase activity. Introducing this motif into an esterase without acetyltransferase activity transformed a "hydrolase" into an "acyltransferase".
Haloalkane dehalogenases and epoxide hydrolases are phylogenetically related and structurally homologous enzymes that use nucleophilic aspartate residues for an SN2 attack on their substrates. Despite their mechanistic similarities, no enzymes are known that exhibit both epoxide hydrolase and dehalogenase activity. We screened a subset of epoxide hydrolases, closely related to dehalogenases, for dehalogenase activity and found that the epoxide hydrolase CorEH from Corynebacterium sp. C12 exhibits promiscuous dehalogenase activity. Compared to the hydrolysis of epoxides like cyclohexene oxide (1.41 micromol min-1 mg-1), the dehalogenation of haloalkanes like 1-bromobutane (0.25 nmol min-1 mg-1) is about 5000-fold lower. In addition to the activity with 1-bromobutane, dehalogenase activity was detected with other substrates like 1-bromohexane, 1,2-dibromoethane, 1-iodobutane, and 1-iodohexane. This study shows that dual epoxide hydrolase and dehalogenase activity can be present in one naturally occurring protein scaffold.
Next-generation sequencing technologies enable doubling of the genomic databases every 2.5 years. Collected sequences represent a rich source of novel biocatalysts. However, the rate of accumulation of sequence data exceeds the rate of functional studies, calling for acceleration and miniaturization of biochemical assays. Here, we present an integrated platform employing bioinformatics, microanalytics, and microfluidics and its application for exploration of unmapped sequence space, using haloalkane dehalogenases as model enzymes. First, we employed bioinformatic analysis for identification of 2,905 putative dehalogenases and rational selection of 45 representative enzymes. Second, we expressed and experimentally characterized 24 enzymes showing sufficient solubility for microanalytical and microfluidic testing. Miniaturization increased the throughput to 20,000 reactions per day with 1000-fold lower protein consumption compared to conventional assays. A single run of the platform doubled dehalogenation toolbox of family members characterized over three decades. Importantly, the dehalogenase activities of nearly one-third of these novel biocatalysts far exceed that of most published HLDs. Two enzymes showed unusually narrow substrate specificity, never before reported for this enzyme family. The strategy is generally applicable to other enzyme families, paving the way towards the acceleration of the process of identification of novel biocatalysts for industrial applications but also for the collection of homogenous data for machine learning. The automated in silico workflow has been released as a user-friendly web-tool EnzymeMiner: https://loschmidt.chemi.muni.cz/enzymeminer/.
Certain hydrolases preferentially catalyze acyl transfer over hydrolysis in an aqueous environment. However, molecular and structural reasons for this phenomenon are still unclear. Here we provide evidence that acyltransferase activity in esterases highly correlates with the hydrophobicity of the substrate-binding pocket. A hydrophobicity scoring system developed in this work allows accurate prediction of promiscuous acyltransferase activity solely from the amino acid sequence of the cap domain. This concept was experimentally verified by systematic investigation of several homologous esterases, leading to the discovery of five novel promiscuous acyltransferases. We also developed a simple, yet versatile, colorimetric assay for rapid characterization of novel acyltransferases. This study demonstrates that promiscuous acyltransferase activity is not as rare as previously thought and provides access to a vast number of novel acyltransferases with diverse substrate specificities and potential applications.
Acyltransferases are enzymes that are capable of catalyzing the transesterification of non-activated esters in an aqueous environment and therefore represent interesting catalysts for applications in various fields. However, only a few acyltransferases have been identified so far, which can be explained by the lack of a simple, broadly applicable high-throughput assay for the identification of these enzymes from large libraries. Here, we present the development of such an assay that is based on the enzymatic formation of oligocarbonates from dimethyl carbonate and 1,6-hexanediol. In contrast to the monomers used as substrates, the oligomers are not soluble in the aqueous environment and form a precipitate which is used to detect enzyme activity by the naked eye, by absorbance or by fluorescence measurements. With activity detected and thus confirmed for the enzymes Est8 and MsAcT, the assay enabled the first identification of acyltransferases that act on carbonates. It will thus allow for the discovery of further efficient acyltransferases or of more efficient variants via enzyme engineering.