Multitarget anti-Alzheimer agents are the focus of very intensive research. Through a comprehensive bibliometric analysis of the publications in the period 1990-2020, we have identified trends and potential gaps that might guide future directions. We found that: (i) the number of publications boomed by 2011 and continued ascending in 2020; (ii) the linked-pharmacophore strategy was preferred over design approaches based on fusing or merging pharmacophores or privileged structures; (iii) a significant number of in vivo studies, mainly using the scopolamine-induced amnesia mouse model, have been performed, especially since 2017; (iv) China, Italy and Spain are the countries with the largest total number of publications on this topic, whereas Portugal, Spain and Italy are the countries in whose scientific communities this topic has generated greatest interest; (v) acetylcholinesterase, beta-amyloid aggregation, oxidative stress, butyrylcholinesterase, and biometal chelation and the binary combinations thereof have been the most commonly pursued, while combinations based on other key targets, such as tau aggregation, glycogen synthase kinase-3beta, NMDA receptors, and more than 70 other targets have been only marginally considered. These results might allow us to spot new design opportunities based on innovative target combinations to expand and diversify the repertoire of multitarget drug candidates and increase the likelihood of finding effective therapies for this devastating disease.
Starting from six potential hits identified in a virtual screening campaign directed to a cryptic pocket of BACE-1, at the edge of the catalytic cleft, we have synthesized and evaluated six hybrid compounds, designed to simultaneously reach BACE-1 secondary and catalytic sites and to exert additional activities of interest for Alzheimer's disease (AD). We have identified a lead compound with potent in vitro activity towards human BACE-1 and cholinesterases, moderate Abeta42 and tau antiaggregating activity, and brain permeability, which is nontoxic in neuronal cells and zebrafish embryos at concentrations above those required for the in vitro activities. This compound completely restored short- and long-term memory in a mouse model of AD (SAMP8) relative to healthy control strain SAMR1, shifted APP processing towards the non-amyloidogenic pathway, reduced tau phosphorylation, and increased the levels of synaptic proteins PSD95 and synaptophysin, thereby emerging as a promising disease-modifying, cognition-enhancing anti-AD lead.