Title: An easy method for the determination of active concentrations of cholinesterase reactivators in blood samples: Application to the efficacy assessment of non quaternary reactivators compared to HI-6 and pralidoxime in VX-poisoned mice Calas AG, Dias J, Rousseau C, Arboleas M, Touvrey-Loiodice M, Mercey G, Jean L, Renard PY, Nachon F Ref: Chemico-Biological Interactions, 267:11, 2017 : PubMed
Organophosphorus nerve agents, like VX, are highly toxic due to their strong inhibition potency against acetylcholinesterase (AChE). AChE inhibited by VX can be reactivated using powerful nucleophilic molecules, most commonly oximes, which are one major component of the emergency treatment in case of nerve agent intoxication. We present here a comparative in vivo study on Swiss mice of four reactivators: HI-6, pralidoxime and two uncharged derivatives of 3-hydroxy-2-pyridinaldoxime that should more easily cross the blood-brain barrier and display a significant central nervous system activity. The reactivability kinetic profile of the oximes is established following intraperitoneal injection in healthy mice, using an original and fast enzymatic method based on the reactivation potential of oxime-containing plasma samples. HI-6 displays the highest reactivation potential whatever the conditions, followed by pralidoxime and the two non quaternary reactivators at the dose of 50 mg/kg bw. But these three last reactivators display equivalent reactivation potential at the same dose of 100 mumol/kg bw. Maximal reactivation potential closely correlates to surviving test results of VX intoxicated mice.
A series of new uncharged functional acetylcholinesterase (AChE) reactivators including heterodimers of tetrahydroacridine with 3-hydroxy-2-pyridine aldoximes and amidoximes has been synthesized. These novel molecules display in vitro reactivation potencies towards VX-, tabun- and paraoxon-inhibited human AChE that are superior to those of the mono- and bis-pyridinium aldoximes currently used against nerve agent and pesticide poisoning. Furthermore, these uncharged compounds exhibit a broader reactivity spectrum compared to currently approved remediation drugs.
        
Title: Tryptoline-3-hydroxypyridinaldoxime conjugates as efficient reactivators of phosphylated human acetyl and butyrylcholinesterases Renou J, Loiodice M, Arboleas M, Baati R, Jean L, Nachon F, Renard PY Ref: Chem Commun (Camb), 50:3947, 2014 : PubMed
Two promising uncharged reactivators for inhibited human BChE and AChE have been described. These compounds show an ability to reactivate VX-inhibited BChE largely superior to those of known pyridinium aldoximes. Moreover, these oximes also exhibit a good ability to reactivate VX-, tabun- and paraoxon-inhibited human AChE.
Organophosphorus nerve agents (OPNAs) are highly toxic compounds that represent a threat to both military and civilian populations. They cause an irreversible inhibition of acetylcholinesterase (AChE), by the formation of a covalent P-O bond with the catalytic serine. Among the present treatment of nerve agents poisoning, pyridinium and bis-pyridinium aldoximes are used to reactivate this inhibited enzyme but these compounds do not readily cross the blood brain barrier (BBB) due to their permanent cationic charge and thus cannot efficiently reactivate cholinesterases in the central nervous system (CNS). In this study, a series of seven new uncharged oximes reactivators have been synthesized and their in vitro ability to reactivate VX and tabun-inhibited human acetylcholinesterase (hAChE) has been evaluated. The dissociation constant K(D) of inhibited enzyme-oxime complex, the reactivity rate constant kr and the second order reactivation rate constant k(r2) have been determined and have been compared to reference oximes HI-6, Obidoxime and 2-Pralidoxime (2-PAM). Regarding the reactivation of VX-inhibited hAChE, all compounds show a better reactivation potency than those of 2-PAM, nevertheless they are less efficient than obidoxime and HI-6. Moreover, one of seven described compounds presents an ability to reactivate tabun-inhibited hAChE equivalent to those of 2-PAM.
Pyridinium and bis-pyridinium aldoximes are used as antidotes to reactivate acetylcholinesterase (AChE) inhibited by organophosphorus nerve agents. Herein, we described a series of nine nonquaternary phenyltetrahydroisoquinoline-pyridinaldoxime conjugates more efficient than or as efficient as pyridinium oximes to reactivate VX-, tabun- and ethyl paraoxon-inhibited human AChE. This study explores the structure-activity relationships of this new family of reactivators and shows that 1b-d are uncharged hAChE reactivators with a broad spectrum.