Title: Design, synthesis and evaluation of novel dual monoamine-cholinesterase inhibitors as potential treatment for Alzheimer's disease Liu W, Lang M, Youdim MB, Amit T, Sun Y, Zhang Z, Wang Y, Weinreb O Ref: Neuropharmacology, 109:376, 2016 : PubMed
Current novel therapeutic approach suggests that multifunctional compounds with diverse biological properties and a single bioavailability and pharmacokinetic metabolism, will produce higher significant advantages in treatment of neurodegenerative diseases, such as Alzheimer's disease (AD). Based on this rational, a new class of cholinesterase (ChE)-monoamine oxidase (MAO) inhibitors were designed and synthesized by amalgamating the propargyl moiety of the irreversible selective MAO-B inhibitor, neuroprotective/neurorestorative anti-Parkinsonian drug, rasagiline, into the "N-methyl" position of the ChE inhibitor, anti-AD drug rivastigmine. Initially, we examined the MAO and ChE inhibitory effect of these novel compounds, MT series in vitro and in vivo. Among MT series, MT-031 exhibited higher potency as a dual MAO-A and ChE inhibitor compared to other compounds in acute-treated mice. Additionally, MT-031 was found to increase the striatal levels of dopamine (DA), serotonin (5-HT) and norepinephrine (NE), and prevent the metabolism of DA and 5-HT. Finally, we have demonstrated that MT-031 exerted neuroprotective effect against H2O2-induced neurotoxicity and reactive oxygen species generation in human neuroblastoma SH-SY5Y cells. These findings provide evidence that MT-031 is a potent brain permeable novel multifunctional, neuroprotective and MAO-A/ChE inhibitor, preserves in one molecule entity some of the beneficial properties of its parent drugs, rasagiline and rivastigmine, and thus may be indicated as novel therapeutic approach for AD.
        
Title: Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and beta-amyloid in ageing and Alzheimer's disease Weinreb O, Amit T, Bar-Am O, Youdim MB Ref: British Journal of Pharmacology, 173:2080, 2016 : PubMed
Alzheimer's disease (AD) is accepted nowadays as a complex neurodegenerative disorder with multifaceted cerebral pathologies, including extracellular deposition of amyloid beta peptide-containing plaques, intracellular neurofibrillary tangles, progressive loss of cholinergic neurons, metal dyshomeostasis, mitochondrial dysfunction, neuroinflammation, glutamate excitoxicity, oxidative stress and increased MAO enzyme activity. This may explain why it is currently widely accepted that a more effective therapy for AD would result from the use of multifunctional drugs, which may affect more than one brain target involved in the disease pathology. The current review will discuss the potential benefits of novel multimodal neuroprotective, brain permeable drugs, recently developed by Youdim and collaborators, as a valuable therapeutic approach for AD treatment. The pharmacological and neuroprotective properties of these multitarget-directed ligands, which target MAO enzymes, the cholinergic system, iron accumulation and amyloid beta peptide generation/aggregation are described, with a special emphasis on their potential therapeutic value for ageing and AD-associated cognitive functions. This review is conceived as a tribute to the broad neuropharmacology work of Professor Moussa Youdim, Professor Emeritus in the Faculty of Medicine and Director of Eve Topf Center of Excellence in Technion-Israel Institute of Technology, and Chief Scientific Officer of ABITAL Pharma Pipeline Ltd., at the occasion of his 75th birthday. LINKED ARTICLES: This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.
        
Title: Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer's disease treatment Weinreb O, Amit T, Bar-Am O, Youdim MB Ref: Curr Drug Targets, 13:483, 2012 : PubMed
Ladostigil [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate] is a dual acetylcholine-butyrylcholineesterase and brain selective monoamine oxidase (MAO)-A and -B inhibitor in vivo (with little or no MAO inhibitory effect in the liver and small intestine), intended for the treatment of dementia co-morbid with extrapyramidal disorders and depression (presently in a Phase IIb clinical study). This suggests that the drug should not cause a significant potentiation of the cardiovascular response to tyramine, thereby making it a potentially safer antidepressant than other irreversible MAO-A inhibitors. Ladostigil was shown to antagonize scopolamine-induced impairment in spatial memory, indicating that it can cause significant increases in rat brain cholinergic activity. Furthermore, ladostigil prevented gliosis and oxidative-nitrative stress and reduced the deficits in episodic and spatial memory induced by intracerebroventricular injection of streptozotocin in rats. Ladostigil was demonstrated to possess potent anti-apoptotic and neuroprotective activities in vitro and in various neurodegenerative rat models, (e.g. hippocampal damage induced by global ischemia in gerbils and cerebral oedema induced in mice by closed head injury). These neuroprotective activities involve regulation of amyloid precursor protein processing; activation of protein kinase C and mitogen-activated protein kinase signaling pathways; inhibition of neuronal death markers; prevention of the fall in mitochondrial membrane potential and upregulation of neurotrophic factors and antioxidative activity. Recent findings demonstrated that the major metabolite of ladostigil, hydroxy-1-(R)-aminoindan has also a neuroprotective activity and thus, may contribute to the overt activity of its parent compound. This review will discuss the scientific evidence for the therapeutic potential use of ladostigil in Alzheimer's and Lewy Body diseases and the molecular signaling pathways that are considered to be involved in the biological activities of the drug.
        
Title: From anti-Parkinson's drug rasagiline to novel multitarget iron chelators with acetylcholinesterase and monoamine oxidase inhibitory and neuroprotective properties for Alzheimer's disease Zheng H, Amit T, Bar-Am O, Fridkin M, Youdim MB, Mandel SA Ref: J Alzheimers Dis, 30:1, 2012 : PubMed
Alzheimer's disease (AD) is a multifactorial syndrome involving a complex array of different, while related, factors in its progression. Accordingly, novel approaches that can simultaneously modulate several disease-related targets hold great promise for the effective treatment of AD. This review describes the development of novel hybrid molecules with multimodal activity, including: i) M30, the brain permeable selective monoamine oxidase (MAO)-A and -B inhibitor with chelating and neuroprotective activity; ii) HLA20, a brain permeable metal chelator with neuroprotective activity; iii) HLA20A, an acetylcholinesterase (AChE) inhibitor with site-activated chelating and neuroprotective activity; iv) M30D, an AChE and MAO-A and -B inhibitor with site-activated chelating and neuroprotective activity; and v) analogs of the neuroprotective aminoacid peptide, NAPVSIPQ. HLA20A and M30D act as pro-chelators and can be activated to liberate their respective active chelators HLA20 and M30 through pseudo inhibition of AChE. We first discuss the knowledge and structure-based strategy for the rational design of these novel compounds. Then, we review our recent studies on these drug candidates, regarding their wide range in vitro and in vivo activities, with emphasis on antioxidant-chelating potency and AchE and MAO-A and -B inhibitory activity, as well as neuroprotective/neurorescue effects. Finally, we discuss the diverse molecular mechanisms of action of these compounds with relevance to AD, including modulation of amyloid-beta and amyloid-beta protein precursor expression/processing; induction of cell cycle arrest; inhibition of neuronal death markers; and upregulation of neurotrophic factors, as well as activation of protein kinase signaling pathways.
        
Title: A novel anti-Alzheimer's disease drug, ladostigil neuroprotective, multimodal brain-selective monoamine oxidase and cholinesterase inhibitor Weinreb O, Amit T, Bar-Am O, Youdim MB Ref: International Review of Neurobiology, 100:191, 2011 : PubMed
The novel therapeutic strategy in which drug candidates are designed to possess diverse pharmacological properties and act on multiple targets has stimulated the development of the multimodal drug, ladostigil [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate]. Ladostigil combines neuroprotective effects with monoamine oxidase-A and -B and cholinesterase inhibitory activities in a single molecule, presently in a Phase IIb clinical trial and intended for the treatment of Alzheimer's disease, and dementia comorbid with extrapyramidal disorders and depression. This chapter will discuss the preclinical scientific evidence for the therapeutic potential use of ladostigil in the clinic and molecular signaling pathways that are considered to be involved in the molecular activities of the drug.
        
Title: Propargylamine containing compounds as modulators of proteolytic cleavage of amyloid-beta protein precursor: involvement of MAPK and PKC activation Bar-Am O, Amit T, Weinreb O, Youdim MB, Mandel S Ref: J Alzheimers Dis, 21:361, 2010 : PubMed
The anti-Parkinsonian, irreversible, selective monoamine oxidase (MAO)-B inhibitors, selegiline (deprenyl, (R)-N-methyl-N-(1-phenylpropan-2-yl) prop-2-yn-1-amine) and rasagiline (Azilect, N-propargyl-1(R)-aminoindan), have been proven to possess neuroprotective/neurorestorative activities in cell cultures and animal models of neurodegenerative diseases. Structure-activity studies provide evidence that neuroprotection is associated with some intrinsic pharmacological action of the propargylamine moiety in these drugs. This indication and recent therapeutic approaches, entailing new drug candidates possessing diverse pharmacological properties and acting on multiple targets, have stimulated the development of two multifunctional chimeric propargylamine-derivatives: 1) ladostigil (TV3326, [(N-propargyl-(3R) 1-(R)-aminoindan-5yl)-ethyl methyl carbamate)], which combines the pharmacophore of rasagiline, with the carbamate moiety of the cholinesterase inhibitor rivastigmine, as a potential treatment for Alzheimer's disease and Lewy body disease; and 2) M30 5-[(N-methyl-N-propargylaminomethyl)-8-hydroxyquinoline], where the propargylamine moiety of rasagiline was embedded onto the backbone of the neuroprotective and brain permeable iron chelator 8-hydroxyquinoline-derivative, VK28 as a potential treatment for various neurodegenerative disorders. Both multifunctional propargylamine-derivatives were found to possess neuroprotective and anti-apoptotic properties. An additional and new neuroprotective effect, shared by the propargylamine-derivative compounds, is related to their ability to regulate the processing of amyloid-beta protein precursor (AbetaPP) by the non-amyloidogenic alpha-secretase pathway. This effect was shown to involve activation of p42/44 mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathway. This review will summarize and discuss current research, focused on the effect of propargylamine-related derivatives on the proteolytic processing of AbetaPP and signal transduction mechanisms.
        
Title: The novel cholinesterase-monoamine oxidase inhibitor and antioxidant, ladostigil, confers neuroprotection in neuroblastoma cells and aged rats Bar-Am O, Weinreb O, Amit T, Youdim MB Ref: Journal of Molecular Neuroscience, 37:135, 2009 : PubMed
The current therapeutic advance in which future drugs are designed to possess varied pharmacological properties and act on multiple targets has stimulated the development of the multimodal drug, ladostigil (TV3326; (N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate). Ladostigil combines neuroprotective effects with monoamine oxidase (MAO)-A and MAO-B and cholinesterase (ChE) inhibitory activities in a single molecule, as a potential treatment for Alzheimer's disease (AD) and Lewy body disease. In the present study, we demonstrate that ladostigil (10(-6)-10 muM) dose-dependently increased cell viability, associated with increased activity of catalase and glutathione reductase and decrease of intracellular reactive oxygen species production in a cytotoxic model of human SH-SY5Y neuroblastoma cells exposed to hydrogen peroxide (H(2)O(2)). In addition, ladostigil significantly upregulated mRNA levels of several antioxidant enzymes (catalase, NAD(P)H quinone oxidoreductase 1 and peroxiredoxin 1) in both H(2)O(2)-treated SH-SY5Y cells, as well as in the high-density human SK-N-SH neuroblastoma cultured apoptotic models. In vivo chronic treatment with ladostigil (1 mg/kg per os per day for 30 days) markedly upregulated mRNA expression levels of various enzymes involved in metabolism and oxidation processes in aged rat hippocampus. In addition to its unique combination of ChE and MAO enzyme inhibition, these results indicate that ladostigil displays neuroprotective activity against oxidative stress-induced cell apoptosis, which might be valuable for aging and age-associated neurodegenerative diseases.
The recent therapeutic approach in which drug candidates are designed to possess diverse pharmacological properties and act on multiple targets has stimulated the development of the multimodal drugs, ladostigil (TV3326) [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate] and the newly designed multifunctional antioxidant iron chelator, M-30 (5-[N-methyl-N-propargylaminomethyl]-8-hydroxyquinoline). Ladostigil combines, in a single molecule, the neuroprotective/neurorestorative effects of the novel anti-Parkinsonian drug and selective monoamine oxidase (MAO)-B inhibitor, rasagiline (Azilect, Teva Pharmaceutical Co.) with the cholinesterase (ChE) inhibitory activity of rivastigmine. A second derivative of rasagiline, M-30 was developed by amalgamating the propargyl moiety of rasagiline into the skeleton of our novel brain permeable neuroprotective iron chelator, VK-28. Preclinical experiments showed that both compounds have anti-Alzheimer's disease activities and thus, the clinical development is oriented toward treatment of this type of dementia. This review discusses the multimodal effects of two rasagiline-containing hybrid molecules, namely ladostigil and M-30, concerning their neuroprotective molecular mechanisms in vivo and in vitro, including regulation of amyloid precursor protein processing, activation of protein kinase C, and mitogen-activated protein kinase signaling pathways, inhibition of cell death markers and upregulation of neurotrophic factors. Altogether, these scientific findings make these multifunctional compounds potentially valuable drugs for the treatment of Alzheimer's disease.
The recent therapeutic approach in which drug candidates are designed to possess diverse pharmacological properties and act on multiple targets has stimulated the development of the multimodal drug, ladostigil (TV3326) ((N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate). Ladostigil combines neuroprotective effects with monoamine oxidase -A and -B and cholinesterase inhibitory activities in a single molecule, as a potential treatment for Alzheimer's disease (AD) and Lewy Body disease. Preclinical studies show that ladostigil has antidepressant and anti-AD activities and the clinical development is planned for these dementias. In this review, we discuss the multimodal effects of ladostigil in terms of neuroprotective molecular mechanism in vivo and in vitro, which include the amyloid precursor protein processing; activation of protein kinase C and mitogen-activated protein kinase pathways; regulation of the Bcl-2 family members; inhibition of cell death markers and up-regulation of neurotrophic factors. Altogether, these scientific findings make ladostigil a potentially valuable drug for the treatment of AD.
        
Title: The neuroprotective effect of ladostigil against hydrogen peroxide-mediated cytotoxicity Weinreb O, Bar-Am O, Amit T, Drigues N, Sagi Y, Youdim MB Ref: Chemico-Biological Interactions, 175:318, 2008 : PubMed
The multifunctional, anti-Alzheimer drug, ladostigil (TV3326) [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate] combines the neuroprotective effects of the anti-Parkinson drug, rasagiline, a selective monoamine oxidase (MAO)-B inhibitor, with the cholinesterase (ChE) inhibitory activity of rivastigmine in a single molecule. Ladostigil has been shown to possess potent antiapoptotic and neuroprotective activities in various oxidative insults in vitro and in vivo, such as prevention of the fall in mitochondrial membrane potential and regulation of Bcl-2 family proteins. In the present study, we demonstrate that ladostigil (1 microM) increased cell viability, associated with the increase of catalase activity and decrease of intracellular reactive oxygen species (ROS) production in human SH-SY5Y neuroblastoma cells exposed to (hydrogen peroxide) H(2)O(2). Furthermore, ladostigil significantly elevated mRNA levels of the antioxidants enzymes, catalase, NAD(P)H quinone oxidoreductase 1 (NQO1) and peroxiredoxin 1 (Prx 1) in H(2)O(2)-treated SH-SY5Y cells. Chronic treatment with ladostigil (1 mg/kg gavage per day for 30 days) markedly up-regulated mRNA expression levels of various antioxidant enzymes in aged rat hippocampus (e.g. glutathione peroxidase precursor (GSHPX-P), glutathione S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PD)). These findings indicate that in addition to its multiple neuroprotective characteristics, ladostigil also possesses antioxidant properties, which might be beneficial for the treatment of oxidative stress (OS) in aging and age-associated neurodegenerative diseases.
        
Title: Aminoindan and hydroxyaminoindan, metabolites of rasagiline and ladostigil, respectively, exert neuroprotective properties in vitro Bar-Am O, Amit T, Youdim MB Ref: Journal of Neurochemistry, 103:500, 2007 : PubMed
The anti-Parkinson, selective irreversible monoamine oxidase B inhibitor drug, rasagiline (Azilect), recently approved by the US Food and Drug Administration, has been shown to possess neuroprotective-neurorescue activities in in vitro and in vivo models. Recent preliminary studies indicated the potential neuroprotective effect of the major metabolite of rasagiline, 1-(R)-aminoindan. In the current study, the neuroprotective properties of 1-(R)-aminoindan were assessed employing a cytotoxic model of human neuroblastoma SK-N-SH cells in high-density culture-induced neuronal death. We show that aminoindan (0.1-1 mumol/L) significantly reduced the apoptosis-associated phosphorylated protein, H2A.X (Ser139), decreased the cleavage of caspase 9 and caspase 3, while increasing the anti-apoptotic proteins, Bcl-2 and Bcl-xl. Protein kinase C (PKC) inhibitor, GF109203X, prevented the neuroprotection, indicating the involvement of PKC in aminoindan-induced cell survival. Aminoindan markedly elevated pPKC(pan) and specifically that of the pro-survival PKC isoform, PKCepsilon. Additionally, hydroxyaminoindan, a metabolite of a novel bifunctional drug, ladostigil [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate], combining cholinesterase and monoamine oxidase inhibitor activity, exerted similar neuroprotective properties. Aminoindan and hydroxyaminoindan also protected rat pheochromacytoma PC-12 cells against the neurotoxin, 6-hydroxydopamine. Our findings suggest that both metabolites may contribute to the overall neuroprotective activity of their respective parent compounds, further implicating rasagiline and ladostigil as potentially valuable drugs for treatment of a wide variety of neurodegenerative disorders of aging.
        
Title: A multifunctional, neuroprotective drug, ladostigil (TV3326), regulates holo-APP translation and processing Yogev-Falach M, Bar-Am O, Amit T, Weinreb O, Youdim MB Ref: FASEB Journal, 20:2177, 2006 : PubMed
The recent therapeutic approach in which drug candidates are designed to possess diverse pharmacological properties and act on multiple targets has stimulated the development of the bifunctional drug ladostigil (TV3326) [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate]. Ladostigil combines the neuroprotective effects of the antiparkinson drug rasagiline, a selective monoamine oxidase (MAO)-B inhibitor, with the cholinesterase (ChE) inhibitory activity of rivastigmine in a single molecule, as a potential treatment for Alzheimer's disease (AD) and Lewy Body disease. Here, we assessed the dual effects of lodostigil in terms of the molecular mechanism of neuroprotection and amyloid precursor protein (APP) regulation/processing by using an apoptotic model of neuroblastoma SK-N-SH cells. Ladostigil dose-dependently decreased cell death via inhibition of the cleavage and prevention of caspase-3 activation (IC50=1.05 microM) through a mechanism related to regulation of the Bcl-2 family proteins, which resulted in reduced levels of Bad and Bax and induced levels of Bcl-2 gene and protein expression. We have also followed APP regulation/processing and found that ladostigil markedly decreased apoptotic-induced levels of holo-APP protein without altering APP mRNA levels, suggesting a posttranscriptional mechanism. In addition, the drug-elevated phosphorylated protein kinase C (pPKC) levels and stimulated the release of the nonamyloidogenic alpha-secretase proteolytic pathway. Similar to ladostigil, its S-isomer, TV3279, which is a ChE inhibitor but lacks MAO inhibitory activity, exerted neuroprotective properties and regulated APP processing, indicating that these effects are independent of MAO inhibition.
        
Title: Implications of co-morbidity for etiology and treatment of neurodegenerative diseases with multifunctional neuroprotective-neurorescue drugs; ladostigil Youdim MB, Amit T, Bar-Am O, Weinreb O, Yogev-Falach M Ref: Neurotox Res, 10:181, 2006 : PubMed
The recent therapeutic approach in which drug candidates are designed to possess diverse pharmacological properties and act on multiple targets has stimulated the development of several multifunction drugs. These include ladostigil (TV3326) [(N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate], which combines the pharmacophore-neuroprotective effects of rasagiline, a selective monoamine oxidase (MAO)-B inhibitor, with the cholinesterase (ChE) inhibitory activity of rivastigmine or iron chelating moiety such as M30. In the case of M30 the pharmacophore of brain permeable iron chelator VK-28 plus the MAO inhibitor-neuroprotective propargylamine moiety of rasagiline are combined in a single molecule as a potential treatment for Alzheimer's disease, Lewy body disease, and Parkinson's disease with dementia. Here, we discuss the activities of ladostigil in terms of its cholinesterase cognitive enhancing potential, antiParkinson, antidepressant, neuroprotection and APP (amyloid precursor protein) processing potential. One major attribute of ladostigil is its neuroprotective activity in neuronal cell cultures and in vivo. Employing an apoptotic model of neuroblastoma SK-N-SH cells, the molecular mechanism of its neuroprotective activity has been determined. The current studies show that ladostigil significantly decreased apoptosis via inhibition of the cleavage and prevention of caspase-3 activation through a mechanism related to regulation of the Bcl-2 family proteins, resulting in reduced levels of Bad and Bax and induced levels of Bcl-2. In addition, ladostigil elevated the levels of pPKC(pan). We have also followed the regulation of APP processing and found that ladostigil markedly decreased apoptotic-induced levels of holo-APP, as well as stimulated the release of the non-amyloidogenic soluble APP (sAPPalpha) into the conditioned medium via a established protein kinsae C-MAPkinase dependent pathway. Similar to ladostigil, its S-isomer, TV3279, which is a ChE inhibitor lacking MAO inhibitory activity, exerted similar neuroprotective properties and APP processing, suggesting that the mode of action is independent of MAO inhibition. These effects were shown to reside in the propargylamine moiety. These findings indicate that the dual actions of the anti-apoptotic-neuroprotective activity and the ability to modulate APP processing, could make ladostigil a potentially valuable drug for the treatment of Alzheimer's disease.
Mitochondria are involved directly in cell survival and death. The assumption has been made that drugs that protect mitochondrial viability and prevent apoptotic cascade-induced mitochondrial permeability transition pore (MPTp) opening will be cytoprotective. Rasagiline (N-propargyl-1R-aminoindan) is a novel, highly potent irreversible monoamine oxidase (MAO) B inhibitor anti-Parkinson drug. Unlike selegiline, it is not derived from amphetamine, and is not metabolized to neurotoxic L-methamphetamine derivative. In addition, it does not have sympathomimetic activity. Rasagiline is effective as monotherapy or adjunct to levodopa for patients with early and late Parkinson's disease (PD) and adverse events do not occur with greater frequency in subjects receiving rasagiline than in those on placebo. Phase III controlled studies indicate that it might have a disease-modifying effect in PD that may be related to its neuroprotective activity. Its S isomer, TVP1022, is more than 1,000 times less potent as an MAO inhibitor. Both drugs, however, have neuroprotective activity in neuronal cell cultures in response to various neurotoxins, and in vivo in response to global ischemia, neurotrauma, head injury, anoxia, etc., indicating that MAO inhibition is not a prerequisite for neuroprotection. Their neuroprotective effect has been demonstrated to be associated directly with the propargylamine moiety, which protects mitochondrial viability and MTPp by activating Bcl-2 and protein kinase C (PKC) and by downregulating the proapoptotic FAS and Bax protein families. Rasagiline and its derivatives also process amyloid precursor protein (APP) to the neuroprotective, neurotrophic, soluble APP alpha (sAPPalpha) by PKC- and MAP kinase-dependent activation of alpha-secretase. The identification of the propargylamine moiety as the neuroprotective component of rasagiline has led us to development of novel bifunctional anti-Alzheimer drugs (ladostigil) possessing cholinesterase and brain-selective MAO inhibitory activity and a similar neuroprotective mechanism of action.
        
Title: Regulation of protein kinase C by the anti-Parkinson drug, MAO-B inhibitor, rasagiline and its derivatives, in vivo Bar-Am O, Yogev-Falach M, Amit T, Sagi Y, Youdim MB Ref: Journal of Neurochemistry, 89:1119, 2004 : PubMed
We have recently shown that the anti-Parkinson-propargyl-containing monoamine oxidase B (MAO-B) inhibitor drug, rasagiline [N-propargyl-(1R)-aminoindan], and its cholinesterase inhibitor derivatives TV3326 and TV3279, regulate amyloid precursor protein (APP) processing by a protein kinase C (PKC)-dependent mechanism in SH-SY5Y neuroblastoma and PC12 cells. In the present study, we investigated the effect of rasagiline and its derivatives on the regulation of the PKC-dependent mechanism and APP processing under in vivo conditions. Administration of rasagiline (0.1 mg/kg) to male C57/BL mice for 14 days significantly decreased membrane-bound holoprotein APP levels in the hippocampus. Additionally, we observed that rasagiline up-regulated p-PKC levels and the expression of alpha and epsilon PKC isozymes in the hippocampus, indicating that the mechanism by which rasagiline affects APP processing may be related to PKC-associated signalling. The results also demonstrate that rasagiline treatment significantly elevated the levels of phosphorylated myristoylated alanine-rich C kinase substrate (p-MARCKS), a major substrate for PKC, as well as the levels of receptors for activated C kinase 1 (RACK1). Similar effects on APP and PKC levels were also demonstrated for the two cholinesterase inhibitor derivatives of rasagiline, TV3326 and TV3279. These results indicate that rasagiline and its derivatives regulate PKC-dependent mechanisms and APP processing. The activation and induction of PKC and MARCKS by these drugs may have a crucial role not only in their neuroprotective activity, but also in their ability to affect neuronal plasticity and spatial learning processes.
        
Title: PKC and MAP kinase-dependent processing of amyloid precursor protein (APP) by neuroprotective propargylamine cholinesterase inhibitors derived from rasagiline and nonsteroidal anti-inflammatory drugs. Youdim MB, Amit T, Avramovich Y, Bar-Am O, Weinstock M, Yogev-Falach M Ref: Cholinergic Mechanisms, CRC Press, :353, 2004 : PubMed
Title: Poster (57) A novel neuroprotective trifunctional cholinesterase inhibitor derivative of the antiparkinson drug, rasagiline, for treatment of dementia and lewy body disease co-morbid with depression Youdim MB, Sagi Y, Derigus N, Naoi M, Maruyama W, Amit T, Falash-Yogev M, Weinstock M Ref: In: Cholinesterases in the Second Millennium: Biomolecular and Pathological Aspects, (Inestrosa NC, Campos EO) P. Universidad Catolica de Chile-FONDAP Biomedicina:351, 2004 : PubMed
Title: Amyloid Processing and Signal Transduction Properties of Antiparkinson-Antialzheimer Neuroprotective Drugs Rasagiline and TV3326 Youdim MB, Amit T, Bar-Am O, Weinstock M, Yogev-Falach M Ref: Annals of the New York Academy of Sciences, 993:378, 2003 : PubMed
Two novel neuroprotective cholinesterase (ChE) inhibitors, TV3326 and TV3279 [(N-propargyl-(3R) and (3S) aminoindan-5-yl)-ethyl methyl carbamate], respectively were derived from rasagiline, for the treatment of Alzheimer's disease (AD). TV3326 also inhibits monoamine oxidase (MAO)-A and B, while its S-isomer, TV3279, lacks MAO-inhibitory activity. The actions of these drugs in the regulation of the amyloid precursor protein (APP) processing using rat PC12 and human SH-SY5Y neuroblastoma cells were examined. Both isomers stimulated the release of the non-amyloidogenic alpha-secretase form of soluble APP (sAPPalpha) from these cell lines. The increases in sAPPalpha, induced by TV3326 and TV3279, were dose-dependent (0.1-100 micro M) and blocked by the hydroxamic acid-based metalloprotease inhibitor, Ro31-9790, suggesting mediation via alpha-secretase activity. Using several signal transduction inhibitors, the involvement of protein kinase C (PKC), mitogen-activated protein (MAP) kinase, and tyrosine kinase-dependent pathways in the enhancement of sAPPalpha release by TV3326 and TV3279 was identified. In addition, both drugs directly induced the phosphorylation of p44 and p42 MAP kinase, which was abolished by the specific inhibitors of MAP kinase activation, PD98059 and U0126. These data suggest a novel pharmacological mechanism, whereby these ChE inhibitors regulate the secretary processes of APP via activation of the MAP kinase pathway.
        
Title: The involvement of mitogen-activated protein (MAP) kinase in the regulation of amyloid precursor protein processing by novel cholinesterase inhibitors derived from rasagiline Yogev-Falach M, Amit T, Bar-Am O, Weinstock M, Youdim MB Ref: FASEB Journal, 16:1674, 2002 : PubMed
Two novel neuroprotective cholinesterase (ChE) inhibitors, TV3326, (N-propargyl-(3R) aminoindan-5-yl)-ethyl methyl carbamate, and TV3279, (N-propargyl-(3S) aminoindan-5-yl)-ethyl methyl carbamate, were derived from rasagiline for the treatment of Alzheimer's disease (AD). TV3326 also inhibits monoamine oxidase (MAO)-A and -B, whereas its S-isomer, TV3279, lacks MAO inhibitory activity. The action of these drugs in the regulation of amyloid precursor protein (APP) processing, using rat PC12 and human SH-SY5Y neuroblastoma cells, was examined. Both isomers stimulated the release of the non-amyloidogenic a-secretase form of soluble APP (sAPPalpha) from these cell lines. The increases in sAPPalpha, induced by TV3326 and TV3279, were dose-dependent (0.1-100 mM) and blocked by the hydroxamic acid-based metalloprotease inhibitor, Ro31-9790, suggesting mediation via a-secretase activity. Using several signal transduction inhibitors, we identified the involvement of protein kinase C (PKC), mitogen-activated protein (MAP) kinase, and tyrosine kinase-dependent pathways in the enhancement of sAPPalpha release by TV3326 and TV3279. In addition, both drugs directly induced the phosphorylation of p44 and p42 MAP kinase, which was abolished by the specific inhibitors of MAP kinase activation, PD98059 and U0126. These data suggest a novel pharmacological mechanism whereby these ChE inhibitors regulate the secretory processes of APP via activation of the MAP kinase pathway.