Lenfant_2013_Chem.Biol.Interact_203_266

Reference

Title : Proteins with an alpha\/beta hydrolase fold: Relationships between subfamilies in an ever-growing superfamily - Lenfant_2013_Chem.Biol.Interact_203_266
Author(s) : Lenfant N , Hotelier T , Bourne Y , Marchot P , Chatonnet A
Ref : Chemico-Biological Interactions , 203 :266 , 2013
Abstract : Alpha/beta hydrolases function as hydrolases, lyases, transferases, hormone precursors or transporters, chaperones or routers of other proteins. The amount of structural and functional available data related to this protein superfamily expands exponentially, as does the number of proteins classified as alpha/beta hydrolases despite poor sequence similarity and lack of experimental data. However the superfamily can be rationally divided according to sequence or structural homologies, leading to subfamilies of proteins with potentially similar functions. Since the discovery of proteins homologous to cholinesterases but devoid of enzymatic activity (e.g., the neuroligins), divergent functions have been ascribed to members of other subfamilies (e.g., lipases, dipeptidylaminopeptidase IV, etc.). To study the potentially moonlighting properties of alpha/beta hydrolases, the ESTHER database (for ESTerase and alpha/beta Hydrolase Enzymes and Relatives; http:\/\/bioweb.supagro.inra.fr/esther), which collects, organizes and disseminates structural and functional information related to alpha/beta hydrolases, has been updated with new tools and the web server interface has been upgraded. A new Overall Table along with a new Tree based on HMM models has been included to tentatively group subfamilies. These tools provide starting points for phylogenetic studies aimed at pinpointing the origin of duplications leading to paralogous genes (e.g., acetylcholinesterase versus butyrylcholinesterase, or neuroligin versus carboxylesterase). Another of our goals is to implement new tools to distinguish catalytically active enzymes from non-catalytic proteins in poorly studied or annotated subfamilies.
ESTHER : Lenfant_2013_Chem.Biol.Interact_203_266
PubMedSearch : Lenfant_2013_Chem.Biol.Interact_203_266
PubMedID: 23010363

Related information

Citations formats

Lenfant N, Hotelier T, Bourne Y, Marchot P, Chatonnet A (2013)
Proteins with an alpha\/beta hydrolase fold: Relationships between subfamilies in an ever-growing superfamily
Chemico-Biological Interactions 203 :266

Lenfant N, Hotelier T, Bourne Y, Marchot P, Chatonnet A (2013)
Chemico-Biological Interactions 203 :266